基于Token和词性融合的变压器预训练及其在网络欺凌自动检测中的应用

Nor Saiful Azam Bin Nor Azmi , Michal Ptaszynski , Fumito Masui , Juuso Eronen , Karol Nowakowski
{"title":"基于Token和词性融合的变压器预训练及其在网络欺凌自动检测中的应用","authors":"Nor Saiful Azam Bin Nor Azmi ,&nbsp;Michal Ptaszynski ,&nbsp;Fumito Masui ,&nbsp;Juuso Eronen ,&nbsp;Karol Nowakowski","doi":"10.1016/j.nlp.2025.100132","DOIUrl":null,"url":null,"abstract":"<div><div>Cyberbullying detection remains a significant challenge in the context of expanding internet and social media usage. This study proposes a novel pretraining methodology for transformer models, integrating Part-of-Speech (POS) information with a unique way of tokenization. The proposed model, based on the ELECTRA architecture, undergoes pretraining and fine-tuning and is referred to as ELECTRA_POS. By leveraging linguistic structures, this approach improves understanding of context and subtle meaning in the text. Through evaluation using the GLUE benchmark and a dedicated cyberbullying detection dataset, ELECTRA_POS consistently delivers enhanced performance compared to conventional transformer models. Key contributions include the introduction of POS-token fusion techniques and their application to improve cyberbullying detection, as well as insights into how linguistic features influence transformer-based models. The result highlights how integrating POS information into the transformer model improves the detection of harmful online behavior while benefiting other natural language processing (NLP) tasks.</div></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"10 ","pages":"Article 100132"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Token and part-of-speech fusion for pretraining of transformers with application in automatic cyberbullying detection\",\"authors\":\"Nor Saiful Azam Bin Nor Azmi ,&nbsp;Michal Ptaszynski ,&nbsp;Fumito Masui ,&nbsp;Juuso Eronen ,&nbsp;Karol Nowakowski\",\"doi\":\"10.1016/j.nlp.2025.100132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cyberbullying detection remains a significant challenge in the context of expanding internet and social media usage. This study proposes a novel pretraining methodology for transformer models, integrating Part-of-Speech (POS) information with a unique way of tokenization. The proposed model, based on the ELECTRA architecture, undergoes pretraining and fine-tuning and is referred to as ELECTRA_POS. By leveraging linguistic structures, this approach improves understanding of context and subtle meaning in the text. Through evaluation using the GLUE benchmark and a dedicated cyberbullying detection dataset, ELECTRA_POS consistently delivers enhanced performance compared to conventional transformer models. Key contributions include the introduction of POS-token fusion techniques and their application to improve cyberbullying detection, as well as insights into how linguistic features influence transformer-based models. The result highlights how integrating POS information into the transformer model improves the detection of harmful online behavior while benefiting other natural language processing (NLP) tasks.</div></div>\",\"PeriodicalId\":100944,\"journal\":{\"name\":\"Natural Language Processing Journal\",\"volume\":\"10 \",\"pages\":\"Article 100132\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Language Processing Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949719125000081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949719125000081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在互联网和社交媒体使用不断扩大的背景下,网络欺凌检测仍然是一个重大挑战。本研究提出了一种新的变压器模型预训练方法,将词性(POS)信息与一种独特的标记化方法相结合。提出的模型,基于ELECTRA架构,经过预训练和微调,被称为ELECTRA_POS。通过利用语言结构,这种方法提高了对语境和文本微妙意义的理解。通过使用GLUE基准测试和专用网络欺凌检测数据集进行评估,ELECTRA_POS与传统变压器模型相比始终提供更高的性能。主要贡献包括引入pos -令牌融合技术及其用于改进网络欺凌检测的应用,以及对语言特征如何影响基于变压器的模型的见解。结果强调了将POS信息集成到变压器模型中如何提高对有害在线行为的检测,同时有利于其他自然语言处理(NLP)任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Token and part-of-speech fusion for pretraining of transformers with application in automatic cyberbullying detection
Cyberbullying detection remains a significant challenge in the context of expanding internet and social media usage. This study proposes a novel pretraining methodology for transformer models, integrating Part-of-Speech (POS) information with a unique way of tokenization. The proposed model, based on the ELECTRA architecture, undergoes pretraining and fine-tuning and is referred to as ELECTRA_POS. By leveraging linguistic structures, this approach improves understanding of context and subtle meaning in the text. Through evaluation using the GLUE benchmark and a dedicated cyberbullying detection dataset, ELECTRA_POS consistently delivers enhanced performance compared to conventional transformer models. Key contributions include the introduction of POS-token fusion techniques and their application to improve cyberbullying detection, as well as insights into how linguistic features influence transformer-based models. The result highlights how integrating POS information into the transformer model improves the detection of harmful online behavior while benefiting other natural language processing (NLP) tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信