数据驱动的铝合金静态再结晶相场分析

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kota Matsumoto , Eisuke Miyoshi , Motoki Umezawa , Masato Ito , Yoshiki Mori , Kishu Akiba , Nobuhiro Kitahara , Kenichi Yaguchi , Akinori Yamanaka
{"title":"数据驱动的铝合金静态再结晶相场分析","authors":"Kota Matsumoto ,&nbsp;Eisuke Miyoshi ,&nbsp;Motoki Umezawa ,&nbsp;Masato Ito ,&nbsp;Yoshiki Mori ,&nbsp;Kishu Akiba ,&nbsp;Nobuhiro Kitahara ,&nbsp;Kenichi Yaguchi ,&nbsp;Akinori Yamanaka","doi":"10.1016/j.commatsci.2025.113749","DOIUrl":null,"url":null,"abstract":"<div><div>Grain growth during static recrystallization has been modeled by the multi-phase-field method. However, its predictive accuracy is insufficient because grain boundary properties such as grain boundary energy have not been accurately identified, and no methods exist for measuring the stored energy distribution of the deformed matrix. In this study, we developed a Bayesian data assimilation technique based on an ensemble square root filter to estimate the stored energy distribution in each deformed matrix using the in-situ observation of growth of recrystallized grain by scanning electron microscopy–electron backscatter diffraction (EBSD). The results demonstrated that the stored energy distribution, which is difficult to measure experimentally, can be estimated only from the time-series data of the grain distribution. The developed method expresses the multi-phase-field simulation results as a probability density function and calculates its temporal evolution, which allows for evaluating the uncertainty of the estimated results for stored energy distribution and grain boundary position from the standard deviation of the probability density function. The developed technique was proven to estimate the stored energy distribution even in cases where an error of approximately 0.5 μm was included in the location of the grain boundaries measured from the in-situ observations. This study opens new pathways for data-driven phase-field simulation in which both in-situ EBSD observation and phase-field simulation of the static recrystallization are effectively utilized.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"251 ","pages":"Article 113749"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven phase-field analysis of static recrystallization in an aluminum alloy\",\"authors\":\"Kota Matsumoto ,&nbsp;Eisuke Miyoshi ,&nbsp;Motoki Umezawa ,&nbsp;Masato Ito ,&nbsp;Yoshiki Mori ,&nbsp;Kishu Akiba ,&nbsp;Nobuhiro Kitahara ,&nbsp;Kenichi Yaguchi ,&nbsp;Akinori Yamanaka\",\"doi\":\"10.1016/j.commatsci.2025.113749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Grain growth during static recrystallization has been modeled by the multi-phase-field method. However, its predictive accuracy is insufficient because grain boundary properties such as grain boundary energy have not been accurately identified, and no methods exist for measuring the stored energy distribution of the deformed matrix. In this study, we developed a Bayesian data assimilation technique based on an ensemble square root filter to estimate the stored energy distribution in each deformed matrix using the in-situ observation of growth of recrystallized grain by scanning electron microscopy–electron backscatter diffraction (EBSD). The results demonstrated that the stored energy distribution, which is difficult to measure experimentally, can be estimated only from the time-series data of the grain distribution. The developed method expresses the multi-phase-field simulation results as a probability density function and calculates its temporal evolution, which allows for evaluating the uncertainty of the estimated results for stored energy distribution and grain boundary position from the standard deviation of the probability density function. The developed technique was proven to estimate the stored energy distribution even in cases where an error of approximately 0.5 μm was included in the location of the grain boundaries measured from the in-situ observations. This study opens new pathways for data-driven phase-field simulation in which both in-situ EBSD observation and phase-field simulation of the static recrystallization are effectively utilized.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"251 \",\"pages\":\"Article 113749\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025625000928\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625000928","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用多相场法对静态再结晶过程中的晶粒生长进行了模拟。然而,由于晶界能等晶界特性尚未被准确识别,且没有测量变形基体存储能量分布的方法,其预测精度不足。本研究利用扫描电镜-电子背散射衍射(EBSD)技术对再结晶晶粒生长过程进行原位观察,建立了一种基于系综平方根滤波的贝叶斯数据同化技术来估计各变形矩阵中存储能量的分布。结果表明,仅从颗粒分布的时间序列数据就可以估计出难以通过实验测量的储能分布。该方法将多相场模拟结果表示为一个概率密度函数,并计算其时间演化,从而可以从概率密度函数的标准差来评估估计结果对储能分布和晶界位置的不确定性。结果表明,该方法即使在晶界位置误差约0.5 μm的情况下,也能准确地估计出储能分布。该研究为数据驱动的相场模拟开辟了新的途径,有效地利用了原位EBSD观测和静态再结晶相场模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Data-driven phase-field analysis of static recrystallization in an aluminum alloy

Data-driven phase-field analysis of static recrystallization in an aluminum alloy
Grain growth during static recrystallization has been modeled by the multi-phase-field method. However, its predictive accuracy is insufficient because grain boundary properties such as grain boundary energy have not been accurately identified, and no methods exist for measuring the stored energy distribution of the deformed matrix. In this study, we developed a Bayesian data assimilation technique based on an ensemble square root filter to estimate the stored energy distribution in each deformed matrix using the in-situ observation of growth of recrystallized grain by scanning electron microscopy–electron backscatter diffraction (EBSD). The results demonstrated that the stored energy distribution, which is difficult to measure experimentally, can be estimated only from the time-series data of the grain distribution. The developed method expresses the multi-phase-field simulation results as a probability density function and calculates its temporal evolution, which allows for evaluating the uncertainty of the estimated results for stored energy distribution and grain boundary position from the standard deviation of the probability density function. The developed technique was proven to estimate the stored energy distribution even in cases where an error of approximately 0.5 μm was included in the location of the grain boundaries measured from the in-situ observations. This study opens new pathways for data-driven phase-field simulation in which both in-situ EBSD observation and phase-field simulation of the static recrystallization are effectively utilized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信