人工智能分子催化:我们现在在哪里?

Zhenzhi Tan , Qi Yang , Sanzhong Luo
{"title":"人工智能分子催化:我们现在在哪里?","authors":"Zhenzhi Tan ,&nbsp;Qi Yang ,&nbsp;Sanzhong Luo","doi":"10.1039/d4qo02363c","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial intelligence (AI) is transforming molecular catalysis by addressing long-standing challenges in retrosynthetic design, catalyst design, reaction development, and autonomous experimentation. AI-powered tools enable chemists to explore high-dimensional chemical spaces, optimize reaction conditions, and accelerate novel reaction discovery with unparalleled efficiency and precision. These innovations are reshaping traditional workflows, transitioning from expert-driven, labor-intensive methodologies to intelligence-guided, data-driven processes. Despite these transformative achievements, significant challenges persist. Critical issues include the demand for high-quality, reliable datasets, the seamless integration of domain-specific chemical knowledge into AI models, and the discrepancy between model predictions and experimental validation. Addressing these barriers is essential to fully unlock AI's potential in molecular catalysis. This review explores recent advancements, enduring challenges, and emerging opportunities in AI-driven molecular catalysis. By focusing on real-world applications and highlighting representative studies, it aims to provide a clear and forward-looking perspective on how AI is redefining the field and paving the way for the next generation of chemical discovery.</div></div>","PeriodicalId":94379,"journal":{"name":"Organic chemistry frontiers : an international journal of organic chemistry","volume":"12 8","pages":"Pages 2759-2776"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI molecular catalysis: where are we now?\",\"authors\":\"Zhenzhi Tan ,&nbsp;Qi Yang ,&nbsp;Sanzhong Luo\",\"doi\":\"10.1039/d4qo02363c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Artificial intelligence (AI) is transforming molecular catalysis by addressing long-standing challenges in retrosynthetic design, catalyst design, reaction development, and autonomous experimentation. AI-powered tools enable chemists to explore high-dimensional chemical spaces, optimize reaction conditions, and accelerate novel reaction discovery with unparalleled efficiency and precision. These innovations are reshaping traditional workflows, transitioning from expert-driven, labor-intensive methodologies to intelligence-guided, data-driven processes. Despite these transformative achievements, significant challenges persist. Critical issues include the demand for high-quality, reliable datasets, the seamless integration of domain-specific chemical knowledge into AI models, and the discrepancy between model predictions and experimental validation. Addressing these barriers is essential to fully unlock AI's potential in molecular catalysis. This review explores recent advancements, enduring challenges, and emerging opportunities in AI-driven molecular catalysis. By focusing on real-world applications and highlighting representative studies, it aims to provide a clear and forward-looking perspective on how AI is redefining the field and paving the way for the next generation of chemical discovery.</div></div>\",\"PeriodicalId\":94379,\"journal\":{\"name\":\"Organic chemistry frontiers : an international journal of organic chemistry\",\"volume\":\"12 8\",\"pages\":\"Pages 2759-2776\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic chemistry frontiers : an international journal of organic chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S2052412925001214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic chemistry frontiers : an international journal of organic chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2052412925001214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)通过解决反合成设计、催化剂设计、反应预测和自主实验等方面的长期挑战,正在改变分子催化。人工智能工具使化学家能够探索高维化学空间,优化反应条件,并以无与伦比的效率和精度加速新反应的发现。这些创新正在重塑传统的工作流程,从专家驱动、劳动密集型的方法转变为智能引导、数据驱动的流程。尽管取得了这些变革性成就,但重大挑战依然存在。关键问题包括对高质量、可靠的数据集的需求,将特定领域的化学知识无缝集成到人工智能模型中,以及模型预测和实验验证之间的差异。解决这些障碍对于充分释放人工智能在分子催化方面的潜力至关重要。本综述探讨了人工智能驱动的分子催化的最新进展、持久挑战和新机遇。通过关注现实世界的应用并突出具有代表性的研究,它旨在为人工智能如何重新定义该领域提供清晰和前瞻性的视角,并为下一代化学发现铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

AI molecular catalysis: where are we now?

AI molecular catalysis: where are we now?
Artificial intelligence (AI) is transforming molecular catalysis by addressing long-standing challenges in retrosynthetic design, catalyst design, reaction development, and autonomous experimentation. AI-powered tools enable chemists to explore high-dimensional chemical spaces, optimize reaction conditions, and accelerate novel reaction discovery with unparalleled efficiency and precision. These innovations are reshaping traditional workflows, transitioning from expert-driven, labor-intensive methodologies to intelligence-guided, data-driven processes. Despite these transformative achievements, significant challenges persist. Critical issues include the demand for high-quality, reliable datasets, the seamless integration of domain-specific chemical knowledge into AI models, and the discrepancy between model predictions and experimental validation. Addressing these barriers is essential to fully unlock AI's potential in molecular catalysis. This review explores recent advancements, enduring challenges, and emerging opportunities in AI-driven molecular catalysis. By focusing on real-world applications and highlighting representative studies, it aims to provide a clear and forward-looking perspective on how AI is redefining the field and paving the way for the next generation of chemical discovery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信