有界区间内两粒子Fleming-Viot过程的脊。

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Journal of Theoretical Probability Pub Date : 2025-01-01 Epub Date: 2025-02-06 DOI:10.1007/s10959-025-01401-4
Krzysztof Burdzy, János Engländer, Donald E Marshall
{"title":"有界区间内两粒子Fleming-Viot过程的脊。","authors":"Krzysztof Burdzy, János Engländer, Donald E Marshall","doi":"10.1007/s10959-025-01401-4","DOIUrl":null,"url":null,"abstract":"<p><p>We show that the spine of the Fleming-Viot process driven by Brownian motion and starting with two particles in a bounded interval has a different law from that of Brownian motion conditioned to stay in the interval forever. Furthermore, we estimate the \"extra drift.\"</p>","PeriodicalId":54760,"journal":{"name":"Journal of Theoretical Probability","volume":"38 2","pages":"31"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802667/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Spine of Two-Particle Fleming-Viot Process in a Bounded Interval.\",\"authors\":\"Krzysztof Burdzy, János Engländer, Donald E Marshall\",\"doi\":\"10.1007/s10959-025-01401-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We show that the spine of the Fleming-Viot process driven by Brownian motion and starting with two particles in a bounded interval has a different law from that of Brownian motion conditioned to stay in the interval forever. Furthermore, we estimate the \\\"extra drift.\\\"</p>\",\"PeriodicalId\":54760,\"journal\":{\"name\":\"Journal of Theoretical Probability\",\"volume\":\"38 2\",\"pages\":\"31\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802667/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10959-025-01401-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-025-01401-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了由布朗运动驱动的弗莱明-维奥过程的脊柱,从两个粒子在有界区间内开始,与布朗运动的脊柱具有永远停留在区间内的不同规律。此外,我们估计了“额外漂移”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Spine of Two-Particle Fleming-Viot Process in a Bounded Interval.

We show that the spine of the Fleming-Viot process driven by Brownian motion and starting with two particles in a bounded interval has a different law from that of Brownian motion conditioned to stay in the interval forever. Furthermore, we estimate the "extra drift."

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Theoretical Probability
Journal of Theoretical Probability 数学-统计学与概率论
CiteScore
1.50
自引率
12.50%
发文量
65
审稿时长
6-12 weeks
期刊介绍: Journal of Theoretical Probability publishes high-quality, original papers in all areas of probability theory, including probability on semigroups, groups, vector spaces, other abstract structures, and random matrices. This multidisciplinary quarterly provides mathematicians and researchers in physics, engineering, statistics, financial mathematics, and computer science with a peer-reviewed forum for the exchange of vital ideas in the field of theoretical probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信