Sandeep Bindra, Ehab M. Mostafa, Mohamed A. Abdelgawad, Samy Selim, Sunil Kumar and Bijo Mathew
{"title":"单胺氧化酶和胆碱酯酶抑制剂双作用碳酸酐酶调节剂的合成策略及药物化学前景。","authors":"Sandeep Bindra, Ehab M. Mostafa, Mohamed A. Abdelgawad, Samy Selim, Sunil Kumar and Bijo Mathew","doi":"10.1039/D4MD00837E","DOIUrl":null,"url":null,"abstract":"<p >Multi-target drug design (MTDD) represents the paradigm shift in pharmaceutical research, moving beyond the conventional one-drug–one-target approach to address the complexity of multifactorial diseases. This strategy aims to develop single therapeutic candidates that can simultaneously modulate multiple biological targets, offering more comprehensive disease management and reducing the likelihood of drug resistance. In this article, we highlighted the design, synthesis, and structure–activity relationships (SARs) of various dual acting inhibitors involved in treatment of neurodegenerative diseases. Dual acting inhibitors targeting carbonic anhydrases (CAs), monoamine oxidases (MAOs), and cholinesterases (ChEs) have emerged as promising therapeutic agents due to their potential in treating complex neurodegenerative and psychiatric disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). By integrating CA inhibitors with MAO and ChE inhibition, researchers aim to address both the neuroprotective and symptomatic aspects of these disorders. The review also discusses key SAR studies that have guided the optimization of dual inhibitors, focusing on achieving selectivity and potency while minimizing off-target effects. From a medicinal chemistry perspective, the dual inhibition approach offers advantages such as improved efficacy, reduced polypharmacy, and better management of disease progression. However, challenges remain, including maintaining selectivity for target isoforms and overcoming pharmacokinetic limitations. Overall, the development of dual-acting CA–MAO–ChE inhibitors represents a compelling avenue in drug discovery, with the potential to significantly impact the treatment of neurodegenerative diseases.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":" 4","pages":" 1532-1549"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic strategies and medicinal chemistry perspectives of dual acting carbonic anhydrase modulators with monoamine oxidase and cholinesterase inhibitors\",\"authors\":\"Sandeep Bindra, Ehab M. Mostafa, Mohamed A. Abdelgawad, Samy Selim, Sunil Kumar and Bijo Mathew\",\"doi\":\"10.1039/D4MD00837E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Multi-target drug design (MTDD) represents the paradigm shift in pharmaceutical research, moving beyond the conventional one-drug–one-target approach to address the complexity of multifactorial diseases. This strategy aims to develop single therapeutic candidates that can simultaneously modulate multiple biological targets, offering more comprehensive disease management and reducing the likelihood of drug resistance. In this article, we highlighted the design, synthesis, and structure–activity relationships (SARs) of various dual acting inhibitors involved in treatment of neurodegenerative diseases. Dual acting inhibitors targeting carbonic anhydrases (CAs), monoamine oxidases (MAOs), and cholinesterases (ChEs) have emerged as promising therapeutic agents due to their potential in treating complex neurodegenerative and psychiatric disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). By integrating CA inhibitors with MAO and ChE inhibition, researchers aim to address both the neuroprotective and symptomatic aspects of these disorders. The review also discusses key SAR studies that have guided the optimization of dual inhibitors, focusing on achieving selectivity and potency while minimizing off-target effects. From a medicinal chemistry perspective, the dual inhibition approach offers advantages such as improved efficacy, reduced polypharmacy, and better management of disease progression. However, challenges remain, including maintaining selectivity for target isoforms and overcoming pharmacokinetic limitations. Overall, the development of dual-acting CA–MAO–ChE inhibitors represents a compelling avenue in drug discovery, with the potential to significantly impact the treatment of neurodegenerative diseases.</p>\",\"PeriodicalId\":21462,\"journal\":{\"name\":\"RSC medicinal chemistry\",\"volume\":\" 4\",\"pages\":\" 1532-1549\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/md/d4md00837e\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/md/d4md00837e","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Synthetic strategies and medicinal chemistry perspectives of dual acting carbonic anhydrase modulators with monoamine oxidase and cholinesterase inhibitors
Multi-target drug design (MTDD) represents the paradigm shift in pharmaceutical research, moving beyond the conventional one-drug–one-target approach to address the complexity of multifactorial diseases. This strategy aims to develop single therapeutic candidates that can simultaneously modulate multiple biological targets, offering more comprehensive disease management and reducing the likelihood of drug resistance. In this article, we highlighted the design, synthesis, and structure–activity relationships (SARs) of various dual acting inhibitors involved in treatment of neurodegenerative diseases. Dual acting inhibitors targeting carbonic anhydrases (CAs), monoamine oxidases (MAOs), and cholinesterases (ChEs) have emerged as promising therapeutic agents due to their potential in treating complex neurodegenerative and psychiatric disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). By integrating CA inhibitors with MAO and ChE inhibition, researchers aim to address both the neuroprotective and symptomatic aspects of these disorders. The review also discusses key SAR studies that have guided the optimization of dual inhibitors, focusing on achieving selectivity and potency while minimizing off-target effects. From a medicinal chemistry perspective, the dual inhibition approach offers advantages such as improved efficacy, reduced polypharmacy, and better management of disease progression. However, challenges remain, including maintaining selectivity for target isoforms and overcoming pharmacokinetic limitations. Overall, the development of dual-acting CA–MAO–ChE inhibitors represents a compelling avenue in drug discovery, with the potential to significantly impact the treatment of neurodegenerative diseases.