以乙烯磺酰氟为衍生试剂,气相色谱/质谱法定量分析全血中硫化物离子。

IF 2.8 4区 医学 Q2 TOXICOLOGY
Ryosuke Shiraki, Shin Ogawa, Kengo Wakigawa, Hidehiko Okazaki, Akinaga Gohda, Takeshi Mori, Yoshiki Katayama
{"title":"以乙烯磺酰氟为衍生试剂,气相色谱/质谱法定量分析全血中硫化物离子。","authors":"Ryosuke Shiraki, Shin Ogawa, Kengo Wakigawa, Hidehiko Okazaki, Akinaga Gohda, Takeshi Mori, Yoshiki Katayama","doi":"10.1007/s11419-025-00712-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Identification and quantification of sulfide ion in biological samples are required in forensic purpose. Gas chromatography-mass spectrometry (GC/MS) has been used for the analysis of sulfide ion by using derivatization reagents. However, conventional derivatization reagents require special attention for derivatization. To simplify the derivatization protocol, we examined ethenesulfonyl fluoride (ESF) as a derivatizing reagent of sulfide ion.</p><p><strong>Methods: </strong>To 100 μL of whole blood sample containing sulfide ion, 100 μL of boric acid buffer (pH 8.0), 100 μL of acetone solution containing internal standard, 100 μL of acetone solution containing 600 mM concentration of ESF, and 100 μL of hexane were added in a 1.5-mL plastic tube. The mixture was vortexed at room temperature, the tubes were centrifuged, and the organic layer was injected into the GC/MS.</p><p><strong>Results: </strong>ESF exhibited higher reactivity toward sulfide ion than interfering compounds present in whole blood, allowing for selective derivatization. With the optimized protocol, the detection limit for sulfide ion was 0.01 μg/mL. The calibration curve showed good linearity (R<sup>2</sup> = 0.9999) in the range of 0.05-10.0 μg/mL, and the precision (% relative standard deviation) and the accuracy (% bias) were within ± 10% (intra- and inter-day).</p><p><strong>Conclusion: </strong>This GC/MS-based method is a valuable tool for forensic investigations and various analytical fields, offering reliable quantification of sulfide ion in whole blood.</p>","PeriodicalId":12329,"journal":{"name":"Forensic Toxicology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GC/MS-based quantitative analysis of sulfide ion in whole blood using ethenesulfonyl fluoride as a derivatization reagent.\",\"authors\":\"Ryosuke Shiraki, Shin Ogawa, Kengo Wakigawa, Hidehiko Okazaki, Akinaga Gohda, Takeshi Mori, Yoshiki Katayama\",\"doi\":\"10.1007/s11419-025-00712-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Identification and quantification of sulfide ion in biological samples are required in forensic purpose. Gas chromatography-mass spectrometry (GC/MS) has been used for the analysis of sulfide ion by using derivatization reagents. However, conventional derivatization reagents require special attention for derivatization. To simplify the derivatization protocol, we examined ethenesulfonyl fluoride (ESF) as a derivatizing reagent of sulfide ion.</p><p><strong>Methods: </strong>To 100 μL of whole blood sample containing sulfide ion, 100 μL of boric acid buffer (pH 8.0), 100 μL of acetone solution containing internal standard, 100 μL of acetone solution containing 600 mM concentration of ESF, and 100 μL of hexane were added in a 1.5-mL plastic tube. The mixture was vortexed at room temperature, the tubes were centrifuged, and the organic layer was injected into the GC/MS.</p><p><strong>Results: </strong>ESF exhibited higher reactivity toward sulfide ion than interfering compounds present in whole blood, allowing for selective derivatization. With the optimized protocol, the detection limit for sulfide ion was 0.01 μg/mL. The calibration curve showed good linearity (R<sup>2</sup> = 0.9999) in the range of 0.05-10.0 μg/mL, and the precision (% relative standard deviation) and the accuracy (% bias) were within ± 10% (intra- and inter-day).</p><p><strong>Conclusion: </strong>This GC/MS-based method is a valuable tool for forensic investigations and various analytical fields, offering reliable quantification of sulfide ion in whole blood.</p>\",\"PeriodicalId\":12329,\"journal\":{\"name\":\"Forensic Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11419-025-00712-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11419-025-00712-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:鉴定和定量生物样品中的硫化物离子需要在法医目的。采用衍生化试剂,气相色谱-质谱法(GC/MS)分析了硫化物离子。然而,传统的衍生化试剂需要特别注意衍生化。为了简化衍生化方案,我们研究了乙烯磺酰氟(ESF)作为硫化物离子的衍生化试剂。方法:取含硫化物离子的全血样本100 μL,硼酸缓冲液100 μL (pH 8.0),含内标品的丙酮溶液100 μL,含600 mM ESF浓度的丙酮溶液100 μL,正己烷100 μL加入1.5 ml塑料管中。将混合物在室温下涡流,离心,将有机层注入GC/MS。结果:与全血中存在的干扰性化合物相比,ESF对硫化物离子表现出更高的反应性,允许选择性衍生化。优化后的方案对硫化物离子的检出限为0.01 μg/mL。在0.05 ~ 10.0 μg/mL范围内线性良好(R2 = 0.9999),精密度(相对标准偏差%)和准确度(偏差%)在±10%以内(日内和日内)。结论:气相色谱/质谱联用方法是一种可靠的全血硫化物定量方法,可用于法医调查和各种分析领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GC/MS-based quantitative analysis of sulfide ion in whole blood using ethenesulfonyl fluoride as a derivatization reagent.

Purpose: Identification and quantification of sulfide ion in biological samples are required in forensic purpose. Gas chromatography-mass spectrometry (GC/MS) has been used for the analysis of sulfide ion by using derivatization reagents. However, conventional derivatization reagents require special attention for derivatization. To simplify the derivatization protocol, we examined ethenesulfonyl fluoride (ESF) as a derivatizing reagent of sulfide ion.

Methods: To 100 μL of whole blood sample containing sulfide ion, 100 μL of boric acid buffer (pH 8.0), 100 μL of acetone solution containing internal standard, 100 μL of acetone solution containing 600 mM concentration of ESF, and 100 μL of hexane were added in a 1.5-mL plastic tube. The mixture was vortexed at room temperature, the tubes were centrifuged, and the organic layer was injected into the GC/MS.

Results: ESF exhibited higher reactivity toward sulfide ion than interfering compounds present in whole blood, allowing for selective derivatization. With the optimized protocol, the detection limit for sulfide ion was 0.01 μg/mL. The calibration curve showed good linearity (R2 = 0.9999) in the range of 0.05-10.0 μg/mL, and the precision (% relative standard deviation) and the accuracy (% bias) were within ± 10% (intra- and inter-day).

Conclusion: This GC/MS-based method is a valuable tool for forensic investigations and various analytical fields, offering reliable quantification of sulfide ion in whole blood.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forensic Toxicology
Forensic Toxicology TOXICOLOGY-
CiteScore
5.80
自引率
9.10%
发文量
40
审稿时长
3 months
期刊介绍: The journal Forensic Toxicology provides an international forum for publication of studies on toxic substances, drugs of abuse, doping agents, chemical warfare agents, and their metabolisms and analyses, which are related to laws and ethics. It includes original articles, reviews, mini-reviews, short communications, and case reports. Although a major focus of the journal is on the development or improvement of analytical methods for the above-mentioned chemicals in human matrices, appropriate studies with animal experiments are also published. Forensic Toxicology is the official publication of the Japanese Association of Forensic Toxicology (JAFT) and is the continuation of the Japanese Journal of Forensic Toxicology (ISSN 0915-9606).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信