等离子体银纳米粒子促进钻石在类太阳激发下的电子发射

IF 3 4区 化学 Q3 CHEMISTRY, PHYSICAL
Alessandro Bellucci, Matteo Mastellone, Daniele Catone, Patrick O'Keeffe, Faustino Martelli, Giuseppe Ammirati, Alessandra Paladini, Stefano Turchini, Francesco Toschi, Antonio Santagata, Maria Lucia Pace, Riccardo Polini, Raffaella Salerno, Veronica Valentini, Daniele M. Trucchi
{"title":"等离子体银纳米粒子促进钻石在类太阳激发下的电子发射","authors":"Alessandro Bellucci,&nbsp;Matteo Mastellone,&nbsp;Daniele Catone,&nbsp;Patrick O'Keeffe,&nbsp;Faustino Martelli,&nbsp;Giuseppe Ammirati,&nbsp;Alessandra Paladini,&nbsp;Stefano Turchini,&nbsp;Francesco Toschi,&nbsp;Antonio Santagata,&nbsp;Maria Lucia Pace,&nbsp;Riccardo Polini,&nbsp;Raffaella Salerno,&nbsp;Veronica Valentini,&nbsp;Daniele M. Trucchi","doi":"10.1002/cptc.202400202","DOIUrl":null,"url":null,"abstract":"<p>The development of a stable, non-toxic material that emits electrons following absorption of visible light may have a major impact on the solar photocatalysis of difficult reactions such as CO<sub>2</sub> and N<sub>2</sub> reduction, as well as for targeted chemical transformations in general. Diamond is a good candidate, however it is a wide bandgap material requiring deep UV photons (<span></span><math></math>\n&lt;227 nm) to promote electrons from the valence band into the conduction band. Embedding silver nanoparticles under the diamond surface allows the photoconductivity of the diamond in the spectral region of the surface plasmon resonance to be increased, while also leading to an enhancement of visible light photoemission. Considering the low intensity of the light sources used in this work and the spectral properties of the enhanced photoconductivity and photoemission a mechanism based on plasmonically enhanced photoconductivity which in turn allows surface states emptied by photoemission to be recharged thus leading to enhanced photoemission in the visible range is proposed.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"9 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cptc.202400202","citationCount":"0","resultStr":"{\"title\":\"Plasmonic Silver Nanoparticles Facilitate Electron Emission from Diamond upon Sun-Like Excitation\",\"authors\":\"Alessandro Bellucci,&nbsp;Matteo Mastellone,&nbsp;Daniele Catone,&nbsp;Patrick O'Keeffe,&nbsp;Faustino Martelli,&nbsp;Giuseppe Ammirati,&nbsp;Alessandra Paladini,&nbsp;Stefano Turchini,&nbsp;Francesco Toschi,&nbsp;Antonio Santagata,&nbsp;Maria Lucia Pace,&nbsp;Riccardo Polini,&nbsp;Raffaella Salerno,&nbsp;Veronica Valentini,&nbsp;Daniele M. Trucchi\",\"doi\":\"10.1002/cptc.202400202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of a stable, non-toxic material that emits electrons following absorption of visible light may have a major impact on the solar photocatalysis of difficult reactions such as CO<sub>2</sub> and N<sub>2</sub> reduction, as well as for targeted chemical transformations in general. Diamond is a good candidate, however it is a wide bandgap material requiring deep UV photons (<span></span><math></math>\\n&lt;227 nm) to promote electrons from the valence band into the conduction band. Embedding silver nanoparticles under the diamond surface allows the photoconductivity of the diamond in the spectral region of the surface plasmon resonance to be increased, while also leading to an enhancement of visible light photoemission. Considering the low intensity of the light sources used in this work and the spectral properties of the enhanced photoconductivity and photoemission a mechanism based on plasmonically enhanced photoconductivity which in turn allows surface states emptied by photoemission to be recharged thus leading to enhanced photoemission in the visible range is proposed.</p>\",\"PeriodicalId\":10108,\"journal\":{\"name\":\"ChemPhotoChem\",\"volume\":\"9 2\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cptc.202400202\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPhotoChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cptc.202400202\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhotoChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cptc.202400202","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

开发一种稳定、无毒的材料,在吸收可见光后发射电子,可能会对二氧化碳和氮气还原等困难反应的太阳能光催化以及一般的靶向化学转化产生重大影响。金刚石是一个很好的候选者,但它是一种宽带隙材料,需要深紫外光子(<227 nm)来促进电子从价带进入导带。在金刚石表面下嵌入银纳米粒子,可以提高金刚石在表面等离子体共振光谱区域的光导率,同时也可以增强可见光的光发射。考虑到本工作中使用的光源的低强度和光电导率和光发射的光谱特性,提出了一种基于等离子体增强光电导率的机制,该机制反过来允许被光发射空化的表面态被充电,从而导致可见光范围内的光发射增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Plasmonic Silver Nanoparticles Facilitate Electron Emission from Diamond upon Sun-Like Excitation

Plasmonic Silver Nanoparticles Facilitate Electron Emission from Diamond upon Sun-Like Excitation

The development of a stable, non-toxic material that emits electrons following absorption of visible light may have a major impact on the solar photocatalysis of difficult reactions such as CO2 and N2 reduction, as well as for targeted chemical transformations in general. Diamond is a good candidate, however it is a wide bandgap material requiring deep UV photons ( <227 nm) to promote electrons from the valence band into the conduction band. Embedding silver nanoparticles under the diamond surface allows the photoconductivity of the diamond in the spectral region of the surface plasmon resonance to be increased, while also leading to an enhancement of visible light photoemission. Considering the low intensity of the light sources used in this work and the spectral properties of the enhanced photoconductivity and photoemission a mechanism based on plasmonically enhanced photoconductivity which in turn allows surface states emptied by photoemission to be recharged thus leading to enhanced photoemission in the visible range is proposed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemPhotoChem
ChemPhotoChem Chemistry-Physical and Theoretical Chemistry
CiteScore
5.80
自引率
5.40%
发文量
165
期刊介绍: Light plays a crucial role in natural processes and leads to exciting phenomena in molecules and materials. ChemPhotoChem welcomes exceptional international research in the entire scope of pure and applied photochemistry, photobiology, and photophysics. Our thorough editorial practices aid us in publishing authoritative research fast. We support the photochemistry community to be a leading light in science. We understand the huge pressures the scientific community is facing every day and we want to support you. Chemistry Europe is an association of 16 chemical societies from 15 European countries. Run by chemists, for chemists—we evaluate, publish, disseminate, and amplify the scientific excellence of chemistry researchers from around the globe.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信