{"title":"加密货币市场风险价值和预期缺口的贝叶斯预测:一个非线性半参数框架","authors":"Cathy W. S. Chen, Po-Hui Chen, Ying-Lin Hsu","doi":"10.1002/asmb.2926","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Cryptocurrencies exhibit high volatility, emphasizing the importance of accurately measuring tail risk in their markets. This research incorporates a threshold-switching mechanism into Taylor's ES-CAViaR models that unveil features such as asymmetry and jump phenomena. These enhancements effectively capture the diverse tail risks of cryptocurrencies while enabling the simultaneous forecasting of both Value-at-Risk (VaR) and Expected Shortfall (ES). The proposed models incorporate two types of functions to address the VaR and ES nexus with the option to use the rolling standard deviation of returns as a short-term volatility proxy as a regressor. We estimate the parameters and forecast tail risk within a Bayesian framework. Taking the two largest cryptocurrencies by market capitalization, Bitcoin and Ethereum, we assess the one-step-ahead forecasting performance over a four-year out-of-sample period using a rolling window approach. The comparative results from backtests and five scoring functions among eight competing models support the conclusion that models with a threshold mechanism capture the tail risk of cryptocurrencies more accurately than other risk models.</p>\n </div>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":"41 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Forecasting of Value-at-Risk and Expected Shortfall in Cryptocurrency Markets: A Nonlinear Semi-Parametric Framework\",\"authors\":\"Cathy W. S. Chen, Po-Hui Chen, Ying-Lin Hsu\",\"doi\":\"10.1002/asmb.2926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Cryptocurrencies exhibit high volatility, emphasizing the importance of accurately measuring tail risk in their markets. This research incorporates a threshold-switching mechanism into Taylor's ES-CAViaR models that unveil features such as asymmetry and jump phenomena. These enhancements effectively capture the diverse tail risks of cryptocurrencies while enabling the simultaneous forecasting of both Value-at-Risk (VaR) and Expected Shortfall (ES). The proposed models incorporate two types of functions to address the VaR and ES nexus with the option to use the rolling standard deviation of returns as a short-term volatility proxy as a regressor. We estimate the parameters and forecast tail risk within a Bayesian framework. Taking the two largest cryptocurrencies by market capitalization, Bitcoin and Ethereum, we assess the one-step-ahead forecasting performance over a four-year out-of-sample period using a rolling window approach. The comparative results from backtests and five scoring functions among eight competing models support the conclusion that models with a threshold mechanism capture the tail risk of cryptocurrencies more accurately than other risk models.</p>\\n </div>\",\"PeriodicalId\":55495,\"journal\":{\"name\":\"Applied Stochastic Models in Business and Industry\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Stochastic Models in Business and Industry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2926\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2926","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Bayesian Forecasting of Value-at-Risk and Expected Shortfall in Cryptocurrency Markets: A Nonlinear Semi-Parametric Framework
Cryptocurrencies exhibit high volatility, emphasizing the importance of accurately measuring tail risk in their markets. This research incorporates a threshold-switching mechanism into Taylor's ES-CAViaR models that unveil features such as asymmetry and jump phenomena. These enhancements effectively capture the diverse tail risks of cryptocurrencies while enabling the simultaneous forecasting of both Value-at-Risk (VaR) and Expected Shortfall (ES). The proposed models incorporate two types of functions to address the VaR and ES nexus with the option to use the rolling standard deviation of returns as a short-term volatility proxy as a regressor. We estimate the parameters and forecast tail risk within a Bayesian framework. Taking the two largest cryptocurrencies by market capitalization, Bitcoin and Ethereum, we assess the one-step-ahead forecasting performance over a four-year out-of-sample period using a rolling window approach. The comparative results from backtests and five scoring functions among eight competing models support the conclusion that models with a threshold mechanism capture the tail risk of cryptocurrencies more accurately than other risk models.
期刊介绍:
ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process.
The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.