{"title":"新型医药污染物活性炭吸附机理及反应活化研究","authors":"Nora Samghouli, Imane Bencheikh, Karima Azoulay, Stina Jansson, Souad El Hajjaji","doi":"10.1007/s10661-025-13685-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this review, several factors have been collected from previous studies on emerging pharmaceutical pollutant adsorption to explain and describe the mechanisms and determine the reactions involved: X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR), and the Boehm titration are the most used characterization techniques to determine activated carbons’ surface functional groups. Some studies have confirmed that the specific surface area and the pore structure are not more important than the functional groups present in the adsorbent surface to explain the amount of adsorption obtained and to describe correctly the interaction between the adsorbent-adsorbate. After the analysis of several studies, we concluded that to have good adsorption, it is necessary to choose the right treatment with the right activating agent to obtain the appropriate functions that will enhance the adsorption process. In addition, the functions that can react with the pharmaceutical pollutants are the oxygenated functions such as hydroxyl function, carboxylic function, and carbonyl function.</p></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10661-025-13685-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Mechanistic and reactional activation study of carbons destined for emerging pharmaceutical pollutant adsorption\",\"authors\":\"Nora Samghouli, Imane Bencheikh, Karima Azoulay, Stina Jansson, Souad El Hajjaji\",\"doi\":\"10.1007/s10661-025-13685-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this review, several factors have been collected from previous studies on emerging pharmaceutical pollutant adsorption to explain and describe the mechanisms and determine the reactions involved: X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR), and the Boehm titration are the most used characterization techniques to determine activated carbons’ surface functional groups. Some studies have confirmed that the specific surface area and the pore structure are not more important than the functional groups present in the adsorbent surface to explain the amount of adsorption obtained and to describe correctly the interaction between the adsorbent-adsorbate. After the analysis of several studies, we concluded that to have good adsorption, it is necessary to choose the right treatment with the right activating agent to obtain the appropriate functions that will enhance the adsorption process. In addition, the functions that can react with the pharmaceutical pollutants are the oxygenated functions such as hydroxyl function, carboxylic function, and carbonyl function.</p></div>\",\"PeriodicalId\":544,\"journal\":{\"name\":\"Environmental Monitoring and Assessment\",\"volume\":\"197 3\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10661-025-13685-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Monitoring and Assessment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10661-025-13685-4\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-025-13685-4","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Mechanistic and reactional activation study of carbons destined for emerging pharmaceutical pollutant adsorption
In this review, several factors have been collected from previous studies on emerging pharmaceutical pollutant adsorption to explain and describe the mechanisms and determine the reactions involved: X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR), and the Boehm titration are the most used characterization techniques to determine activated carbons’ surface functional groups. Some studies have confirmed that the specific surface area and the pore structure are not more important than the functional groups present in the adsorbent surface to explain the amount of adsorption obtained and to describe correctly the interaction between the adsorbent-adsorbate. After the analysis of several studies, we concluded that to have good adsorption, it is necessary to choose the right treatment with the right activating agent to obtain the appropriate functions that will enhance the adsorption process. In addition, the functions that can react with the pharmaceutical pollutants are the oxygenated functions such as hydroxyl function, carboxylic function, and carbonyl function.
期刊介绍:
Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.