麦麸和尿素改性稻壳对废水中萘酚绿B和靛胭脂红的去除研究

IF 3 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Ayesha Saleem, Aisha Munawar, Shabana Kauser
{"title":"麦麸和尿素改性稻壳对废水中萘酚绿B和靛胭脂红的去除研究","authors":"Ayesha Saleem,&nbsp;Aisha Munawar,&nbsp;Shabana Kauser","doi":"10.1007/s10661-025-13719-x","DOIUrl":null,"url":null,"abstract":"<div><p>Dye-related water contamination is a profound environmental issue, primarily because of the toxic nature of dyes and their harmful effects on living organisms. These pollutants can have severe consequences for ecosystems and human health. In response to this challenge, natural adsorbents have emerged as a highly promising solution. The novelty of my work lies in the use of wheat bran and urea-modified rice husk as biosorbents for the removal of naphthol green B and indigo carmine dyes from wastewater. While agricultural waste materials have been explored for wastewater treatment and rice husk modification with urea to enhance adsorption capacity is a unique approach. This innovative method offers a cost-effective and environmentally friendly solution for treating dye-contaminated wastewater, contributing to sustainable wastewater management practices. Their cost-effectiveness, ease of application, and high removal efficiency make them attractive options for mitigating dye pollution. The results are notable, with wheat bran and urea-modified rice husk achieving removal rates of 96% and 98% for naphthol green b, respectively. Similarly, indigo carmine removal rates reached 92% and 91% with wheat bran and urea-modified rice husk, respectively. Using Fourier transform infrared spectroscopy and scanning electron microscopy, various mechanisms behind the adsorption process of both dyes onto the adsorbent’s surfaces have been uncovered. These mechanisms encompass electrostatic interactions and the active roles of functional groups. The study results underscore that wheat bran and urea-modified rice husk are not just cost-effective but also highly efficient adsorbents for removing acidic dyes from wastewater.</p></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Removal of naphthol green B and indigo carmine from wastewater by wheat bran and urea-modified rice husk\",\"authors\":\"Ayesha Saleem,&nbsp;Aisha Munawar,&nbsp;Shabana Kauser\",\"doi\":\"10.1007/s10661-025-13719-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dye-related water contamination is a profound environmental issue, primarily because of the toxic nature of dyes and their harmful effects on living organisms. These pollutants can have severe consequences for ecosystems and human health. In response to this challenge, natural adsorbents have emerged as a highly promising solution. The novelty of my work lies in the use of wheat bran and urea-modified rice husk as biosorbents for the removal of naphthol green B and indigo carmine dyes from wastewater. While agricultural waste materials have been explored for wastewater treatment and rice husk modification with urea to enhance adsorption capacity is a unique approach. This innovative method offers a cost-effective and environmentally friendly solution for treating dye-contaminated wastewater, contributing to sustainable wastewater management practices. Their cost-effectiveness, ease of application, and high removal efficiency make them attractive options for mitigating dye pollution. The results are notable, with wheat bran and urea-modified rice husk achieving removal rates of 96% and 98% for naphthol green b, respectively. Similarly, indigo carmine removal rates reached 92% and 91% with wheat bran and urea-modified rice husk, respectively. Using Fourier transform infrared spectroscopy and scanning electron microscopy, various mechanisms behind the adsorption process of both dyes onto the adsorbent’s surfaces have been uncovered. These mechanisms encompass electrostatic interactions and the active roles of functional groups. The study results underscore that wheat bran and urea-modified rice husk are not just cost-effective but also highly efficient adsorbents for removing acidic dyes from wastewater.</p></div>\",\"PeriodicalId\":544,\"journal\":{\"name\":\"Environmental Monitoring and Assessment\",\"volume\":\"197 3\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Monitoring and Assessment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10661-025-13719-x\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-025-13719-x","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

染料水污染是一个深刻的环境问题,主要是因为染料的毒性及其对生物的有害影响。这些污染物会对生态系统和人类健康造成严重后果。为了应对这一挑战,天然吸附剂已经成为一种非常有前途的解决方案。我的工作新颖之处在于使用麦麸和尿素改性稻壳作为生物吸附剂去除废水中的萘酚绿B和靛蓝胭脂红染料。而农业废弃物已被探索用于废水处理,用尿素改性稻壳以提高吸附能力是一条独特的途径。这种创新的方法为处理染料污染废水提供了一种具有成本效益和环境友好的解决方案,有助于可持续的废水管理实践。它们的成本效益,易于应用和高去除效率使它们成为减轻染料污染的有吸引力的选择。结果表明,麦麸和尿素改性稻壳对萘酚绿b的去除率分别为96%和98%。同样,麦麸和尿素修饰稻壳对靛蓝胭脂红的去除率分别达到92%和91%。利用傅里叶变换红外光谱和扫描电子显微镜,揭示了两种染料在吸附剂表面吸附过程背后的各种机制。这些机制包括静电相互作用和官能团的积极作用。研究结果表明,麦麸和尿素改性稻壳不仅具有成本效益,而且是去除废水中酸性染料的高效吸附剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Removal of naphthol green B and indigo carmine from wastewater by wheat bran and urea-modified rice husk

Removal of naphthol green B and indigo carmine from wastewater by wheat bran and urea-modified rice husk

Dye-related water contamination is a profound environmental issue, primarily because of the toxic nature of dyes and their harmful effects on living organisms. These pollutants can have severe consequences for ecosystems and human health. In response to this challenge, natural adsorbents have emerged as a highly promising solution. The novelty of my work lies in the use of wheat bran and urea-modified rice husk as biosorbents for the removal of naphthol green B and indigo carmine dyes from wastewater. While agricultural waste materials have been explored for wastewater treatment and rice husk modification with urea to enhance adsorption capacity is a unique approach. This innovative method offers a cost-effective and environmentally friendly solution for treating dye-contaminated wastewater, contributing to sustainable wastewater management practices. Their cost-effectiveness, ease of application, and high removal efficiency make them attractive options for mitigating dye pollution. The results are notable, with wheat bran and urea-modified rice husk achieving removal rates of 96% and 98% for naphthol green b, respectively. Similarly, indigo carmine removal rates reached 92% and 91% with wheat bran and urea-modified rice husk, respectively. Using Fourier transform infrared spectroscopy and scanning electron microscopy, various mechanisms behind the adsorption process of both dyes onto the adsorbent’s surfaces have been uncovered. These mechanisms encompass electrostatic interactions and the active roles of functional groups. The study results underscore that wheat bran and urea-modified rice husk are not just cost-effective but also highly efficient adsorbents for removing acidic dyes from wastewater.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Monitoring and Assessment
Environmental Monitoring and Assessment 环境科学-环境科学
CiteScore
4.70
自引率
6.70%
发文量
1000
审稿时长
7.3 months
期刊介绍: Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信