在非相对论和无质量极限区Klein-Gordon-Schrödinger系统的指数波积分器的均匀误差界

IF 4.4 2区 数学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jiyong Li, Minghui Yang
{"title":"在非相对论和无质量极限区Klein-Gordon-Schrödinger系统的指数波积分器的均匀误差界","authors":"Jiyong Li,&nbsp;Minghui Yang","doi":"10.1016/j.matcom.2025.01.027","DOIUrl":null,"url":null,"abstract":"<div><div>We propose an exponential wave integrator Fourier pseudo-spectral (EWI-FP) method and establish the uniform error bounds for the Klein–Gordon–Schrödinger system (KGSS) with <span><math><mrow><mi>ɛ</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>. In the nonrelativistic and massless limit regime (<span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>ɛ</mi><mo>≪</mo><mn>1</mn></mrow></math></span>), the solution of KGSS propagates waves with wavelength <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>ɛ</mi><mo>)</mo></mrow></mrow></math></span> in time and amplitude at <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>ɛ</mi></mrow><mrow><msup><mrow><mi>α</mi></mrow><mrow><mi>†</mi></mrow></msup></mrow></msup><mo>)</mo></mrow></mrow></math></span> where <span><math><mrow><msup><mrow><mi>α</mi></mrow><mrow><mi>†</mi></mrow></msup><mo>=</mo><mo>min</mo><mrow><mo>{</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>+</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></mrow></mrow></math></span> with two parameters <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span>. The parameters satisfy <span><math><mrow><mi>α</mi><mo>≥</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>≥</mo><mo>−</mo><mn>1</mn></mrow></math></span>. In this regime, due to the oscillation in time, it is very difficult to develop efficient schemes and make the corresponding error analysis for KGSS. In this paper, firstly, in order to overcome the difficulty of controlling the nonlinear terms, we transform the KGSS into a system with higher derivative. Then we construct an EWI-FP method and provide the error estimates with two bounds at <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>σ</mi><mo>+</mo><mn>2</mn></mrow></msup><mo>+</mo><mo>min</mo><mrow><mo>{</mo><mi>τ</mi><mo>/</mo><msup><mrow><mi>ɛ</mi></mrow><mrow><mn>1</mn><mo>−</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></msup><mo>,</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><msup><mrow><mi>ɛ</mi></mrow><mrow><mn>2</mn><mo>−</mo><msup><mrow><mi>α</mi></mrow><mrow><mi>†</mi></mrow></msup></mrow></msup><mo>}</mo></mrow><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>σ</mi><mo>+</mo><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>ɛ</mi></mrow><mrow><msup><mrow><mi>α</mi></mrow><mrow><mi>†</mi></mrow></msup></mrow></msup><mo>)</mo></mrow></mrow></math></span>, respectively, where <span><math><mrow><msup><mrow><mi>α</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mo>min</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mi>α</mi><mo>,</mo><mn>1</mn><mo>+</mo><mi>β</mi><mo>}</mo></mrow></mrow></math></span>, <span><math><mi>σ</mi></math></span> has to do with the smoothness of the solution in space, <span><math><mi>h</mi></math></span> is mesh size and <span><math><mi>τ</mi></math></span> is time step. From the two error bounds, we obtain the error estimates <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>σ</mi><mo>+</mo><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>τ</mi></mrow><mrow><msup><mrow><mi>α</mi></mrow><mrow><mi>†</mi></mrow></msup></mrow></msup><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>α</mi><mo>≥</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>≥</mo><mo>−</mo><mn>1</mn></mrow></math></span>. Hence, we get uniform second-order error bounds at <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>σ</mi><mo>+</mo><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> in time when <span><math><mrow><mi>α</mi><mo>≥</mo><mn>2</mn></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, and uniformly accurate first-order error estimates for any <span><math><mrow><mi>α</mi><mo>≥</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>≥</mo><mn>0</mn></mrow></math></span>. We also get uniformly accurate spatial spectral accuracy for any <span><math><mrow><mi>α</mi><mo>≥</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>≥</mo><mo>−</mo><mn>1</mn></mrow></math></span>. Our numerical results support our conclusions.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"233 ","pages":"Pages 237-258"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform error bounds of an exponential wave integrator for the Klein–Gordon–Schrödinger system in the nonrelativistic and massless limit regime\",\"authors\":\"Jiyong Li,&nbsp;Minghui Yang\",\"doi\":\"10.1016/j.matcom.2025.01.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose an exponential wave integrator Fourier pseudo-spectral (EWI-FP) method and establish the uniform error bounds for the Klein–Gordon–Schrödinger system (KGSS) with <span><math><mrow><mi>ɛ</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>. In the nonrelativistic and massless limit regime (<span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>ɛ</mi><mo>≪</mo><mn>1</mn></mrow></math></span>), the solution of KGSS propagates waves with wavelength <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>ɛ</mi><mo>)</mo></mrow></mrow></math></span> in time and amplitude at <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>ɛ</mi></mrow><mrow><msup><mrow><mi>α</mi></mrow><mrow><mi>†</mi></mrow></msup></mrow></msup><mo>)</mo></mrow></mrow></math></span> where <span><math><mrow><msup><mrow><mi>α</mi></mrow><mrow><mi>†</mi></mrow></msup><mo>=</mo><mo>min</mo><mrow><mo>{</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>+</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></mrow></mrow></math></span> with two parameters <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span>. The parameters satisfy <span><math><mrow><mi>α</mi><mo>≥</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>≥</mo><mo>−</mo><mn>1</mn></mrow></math></span>. In this regime, due to the oscillation in time, it is very difficult to develop efficient schemes and make the corresponding error analysis for KGSS. In this paper, firstly, in order to overcome the difficulty of controlling the nonlinear terms, we transform the KGSS into a system with higher derivative. Then we construct an EWI-FP method and provide the error estimates with two bounds at <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>σ</mi><mo>+</mo><mn>2</mn></mrow></msup><mo>+</mo><mo>min</mo><mrow><mo>{</mo><mi>τ</mi><mo>/</mo><msup><mrow><mi>ɛ</mi></mrow><mrow><mn>1</mn><mo>−</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></msup><mo>,</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><msup><mrow><mi>ɛ</mi></mrow><mrow><mn>2</mn><mo>−</mo><msup><mrow><mi>α</mi></mrow><mrow><mi>†</mi></mrow></msup></mrow></msup><mo>}</mo></mrow><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>σ</mi><mo>+</mo><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>ɛ</mi></mrow><mrow><msup><mrow><mi>α</mi></mrow><mrow><mi>†</mi></mrow></msup></mrow></msup><mo>)</mo></mrow></mrow></math></span>, respectively, where <span><math><mrow><msup><mrow><mi>α</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mo>min</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mi>α</mi><mo>,</mo><mn>1</mn><mo>+</mo><mi>β</mi><mo>}</mo></mrow></mrow></math></span>, <span><math><mi>σ</mi></math></span> has to do with the smoothness of the solution in space, <span><math><mi>h</mi></math></span> is mesh size and <span><math><mi>τ</mi></math></span> is time step. From the two error bounds, we obtain the error estimates <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>σ</mi><mo>+</mo><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>τ</mi></mrow><mrow><msup><mrow><mi>α</mi></mrow><mrow><mi>†</mi></mrow></msup></mrow></msup><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>α</mi><mo>≥</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>≥</mo><mo>−</mo><mn>1</mn></mrow></math></span>. Hence, we get uniform second-order error bounds at <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>σ</mi><mo>+</mo><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> in time when <span><math><mrow><mi>α</mi><mo>≥</mo><mn>2</mn></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, and uniformly accurate first-order error estimates for any <span><math><mrow><mi>α</mi><mo>≥</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>≥</mo><mn>0</mn></mrow></math></span>. We also get uniformly accurate spatial spectral accuracy for any <span><math><mrow><mi>α</mi><mo>≥</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>≥</mo><mo>−</mo><mn>1</mn></mrow></math></span>. Our numerical results support our conclusions.</div></div>\",\"PeriodicalId\":49856,\"journal\":{\"name\":\"Mathematics and Computers in Simulation\",\"volume\":\"233 \",\"pages\":\"Pages 237-258\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Computers in Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475425000357\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475425000357","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种指数波积分傅立叶伪谱(EWI-FP)方法,并建立了ε∈(0,1)的Klein-Gordon-Schrödinger系统(KGSS)的统一误差界。在非相对论性和无质量的极限区(0< i≪1)中,KGSS溶液在O(i α α†)处传播波长为O(O)的波,其中α†=min{α,β+1,2},有两个参数α和β。参数满足α≥0和β≥- 1。在这种情况下,由于时间上的振荡,很难制定有效的方案并对KGSS进行相应的误差分析。首先,为了克服控制非线性项的困难,我们将KGSS转化为具有高导数的系统。然后我们构造了一种EWI-FP方法,并分别在O(hσ+2+min{τ/ α 1−α∗,τ2/ α 2−α†})和O(hσ+2+τ2+ α†)处给出了两个界的误差估计,其中α∗=min{1,α,1+β}, σ表示解在空间上的平滑度,h表示网格大小,τ表示时间步长。由这两个误差界,我们得到了α≥0和β≥- 1时的误差估计O(hσ+2+τα†)。因此,当α≥2和β≥1时,我们得到了在O(hσ+2+τ2)处一致的二阶误差界,以及任意α≥1和β≥0时一致准确的一阶误差估计。我们还得到了任意α≥0和β≥- 1的均匀精确的空间光谱精度。我们的数值结果支持我们的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform error bounds of an exponential wave integrator for the Klein–Gordon–Schrödinger system in the nonrelativistic and massless limit regime
We propose an exponential wave integrator Fourier pseudo-spectral (EWI-FP) method and establish the uniform error bounds for the Klein–Gordon–Schrödinger system (KGSS) with ɛ(0,1]. In the nonrelativistic and massless limit regime (0<ɛ1), the solution of KGSS propagates waves with wavelength O(ɛ) in time and amplitude at O(ɛα) where α=min{α,β+1,2} with two parameters α and β. The parameters satisfy α0 and β1. In this regime, due to the oscillation in time, it is very difficult to develop efficient schemes and make the corresponding error analysis for KGSS. In this paper, firstly, in order to overcome the difficulty of controlling the nonlinear terms, we transform the KGSS into a system with higher derivative. Then we construct an EWI-FP method and provide the error estimates with two bounds at O(hσ+2+min{τ/ɛ1α,τ2/ɛ2α}) and O(hσ+2+τ2+ɛα), respectively, where α=min{1,α,1+β}, σ has to do with the smoothness of the solution in space, h is mesh size and τ is time step. From the two error bounds, we obtain the error estimates O(hσ+2+τα) for α0 and β1. Hence, we get uniform second-order error bounds at O(hσ+2+τ2) in time when α2 and β1, and uniformly accurate first-order error estimates for any α1 and β0. We also get uniformly accurate spatial spectral accuracy for any α0 and β1. Our numerical results support our conclusions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics and Computers in Simulation
Mathematics and Computers in Simulation 数学-计算机:跨学科应用
CiteScore
8.90
自引率
4.30%
发文量
335
审稿时长
54 days
期刊介绍: The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles. Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO. Topics covered by the journal include mathematical tools in: •The foundations of systems modelling •Numerical analysis and the development of algorithms for simulation They also include considerations about computer hardware for simulation and about special software and compilers. The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research. The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信