求解MAX-SAT问题的混合二进制SGO-GA

Rhiddhi Prasad Das , Anuruddha Paul , Junali Jasmine Jena , Bibhuti Bhusan Dash , Utpal Chandra De , Mahendra Kumar Gourisaria
{"title":"求解MAX-SAT问题的混合二进制SGO-GA","authors":"Rhiddhi Prasad Das ,&nbsp;Anuruddha Paul ,&nbsp;Junali Jasmine Jena ,&nbsp;Bibhuti Bhusan Dash ,&nbsp;Utpal Chandra De ,&nbsp;Mahendra Kumar Gourisaria","doi":"10.1016/j.procs.2025.01.055","DOIUrl":null,"url":null,"abstract":"<div><div>The Maximum Satisfiability Problem (MAX-SAT) is a crucial NP-hard optimization problem with applications in artificial intelligence, circuit design, scheduling, and combinatorial optimization. In this work, we provide a unique hybrid strategy that blends Genetic Algorithms (GA) with Social Group Optimization (SGO) algorithm to effectively solve the MAX-SAT problem. The SGO algorithm, inspired by the social behavior of groups, excels in exploring diverse regions of the search space. w used a binary variant of SGO i.e. Binary-SGO which is defined specifically for binary search spaces, while GA leverages evolutionary principles to exploit local optima through selection, crossover, and mutation. By integrating the exploration capabilities of SGO with the exploitation strengths of GA, the hybrid approach strikes an optimal balance between global and local search. Extensive experimental evaluations conducted on standard MAX-SAT benchmarks demonstrate that our hybrid algorithm outperforms several existing state-of-the-art meta-heuristic algorithms. Hybrid BSGO-GA achieved the highest average fitness values, with an average accuracy of 99.7% in Experiment 1, 99.61% in Experiment 2, and 99.21% in Experiment 3 and achieved complete satisfiability in 55 out of 75 cases in Experiment 1, 42 out of 75 cases in Experiment 2, and 7 out of 75 cases in Experiment 3. This approach demonstrates the potential of hybrid metaheuristics in addressing complex optimization problems and offers a robust framework for tackling other NP-hard problems.</div></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"252 ","pages":"Pages 944-953"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Binary SGO-GA for solving MAX-SAT problem\",\"authors\":\"Rhiddhi Prasad Das ,&nbsp;Anuruddha Paul ,&nbsp;Junali Jasmine Jena ,&nbsp;Bibhuti Bhusan Dash ,&nbsp;Utpal Chandra De ,&nbsp;Mahendra Kumar Gourisaria\",\"doi\":\"10.1016/j.procs.2025.01.055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Maximum Satisfiability Problem (MAX-SAT) is a crucial NP-hard optimization problem with applications in artificial intelligence, circuit design, scheduling, and combinatorial optimization. In this work, we provide a unique hybrid strategy that blends Genetic Algorithms (GA) with Social Group Optimization (SGO) algorithm to effectively solve the MAX-SAT problem. The SGO algorithm, inspired by the social behavior of groups, excels in exploring diverse regions of the search space. w used a binary variant of SGO i.e. Binary-SGO which is defined specifically for binary search spaces, while GA leverages evolutionary principles to exploit local optima through selection, crossover, and mutation. By integrating the exploration capabilities of SGO with the exploitation strengths of GA, the hybrid approach strikes an optimal balance between global and local search. Extensive experimental evaluations conducted on standard MAX-SAT benchmarks demonstrate that our hybrid algorithm outperforms several existing state-of-the-art meta-heuristic algorithms. Hybrid BSGO-GA achieved the highest average fitness values, with an average accuracy of 99.7% in Experiment 1, 99.61% in Experiment 2, and 99.21% in Experiment 3 and achieved complete satisfiability in 55 out of 75 cases in Experiment 1, 42 out of 75 cases in Experiment 2, and 7 out of 75 cases in Experiment 3. This approach demonstrates the potential of hybrid metaheuristics in addressing complex optimization problems and offers a robust framework for tackling other NP-hard problems.</div></div>\",\"PeriodicalId\":20465,\"journal\":{\"name\":\"Procedia Computer Science\",\"volume\":\"252 \",\"pages\":\"Pages 944-953\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877050925000559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050925000559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最大可满足性问题(MAX-SAT)是一个重要的NP-hard优化问题,在人工智能、电路设计、调度和组合优化等领域都有应用。在这项工作中,我们提供了一种独特的混合策略,将遗传算法(GA)与社会群体优化(SGO)算法相结合,有效地解决了MAX-SAT问题。SGO算法受到群体社会行为的启发,擅长探索搜索空间的不同区域。w使用了SGO的二进制变体,即binary -SGO,它是专门为二进制搜索空间定义的,而GA利用进化原理通过选择、交叉和突变来利用局部最优。该混合方法将SGO的搜索能力与遗传算法的挖掘能力相结合,实现了全局搜索与局部搜索的最佳平衡。在标准MAX-SAT基准测试上进行的大量实验评估表明,我们的混合算法优于几种现有的最先进的元启发式算法。混合BSGO-GA获得了最高的平均适应度值,实验1的平均准确率为99.7%,实验2为99.61%,实验3为99.21%,实验1的75例中有55例完全满意,实验2的75例中有42例完全满意,实验3的75例中有7例完全满意。这种方法展示了混合元启发式在解决复杂优化问题方面的潜力,并为解决其他np困难问题提供了一个强大的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Binary SGO-GA for solving MAX-SAT problem
The Maximum Satisfiability Problem (MAX-SAT) is a crucial NP-hard optimization problem with applications in artificial intelligence, circuit design, scheduling, and combinatorial optimization. In this work, we provide a unique hybrid strategy that blends Genetic Algorithms (GA) with Social Group Optimization (SGO) algorithm to effectively solve the MAX-SAT problem. The SGO algorithm, inspired by the social behavior of groups, excels in exploring diverse regions of the search space. w used a binary variant of SGO i.e. Binary-SGO which is defined specifically for binary search spaces, while GA leverages evolutionary principles to exploit local optima through selection, crossover, and mutation. By integrating the exploration capabilities of SGO with the exploitation strengths of GA, the hybrid approach strikes an optimal balance between global and local search. Extensive experimental evaluations conducted on standard MAX-SAT benchmarks demonstrate that our hybrid algorithm outperforms several existing state-of-the-art meta-heuristic algorithms. Hybrid BSGO-GA achieved the highest average fitness values, with an average accuracy of 99.7% in Experiment 1, 99.61% in Experiment 2, and 99.21% in Experiment 3 and achieved complete satisfiability in 55 out of 75 cases in Experiment 1, 42 out of 75 cases in Experiment 2, and 7 out of 75 cases in Experiment 3. This approach demonstrates the potential of hybrid metaheuristics in addressing complex optimization problems and offers a robust framework for tackling other NP-hard problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信