使用YOLOv5的流浪狗检测系统

Ashwini Bhosale , Pranav Shinde , Yash Firke , Shivprasad Patil , Pranav Mitake , Samruddhi Shinde
{"title":"使用YOLOv5的流浪狗检测系统","authors":"Ashwini Bhosale ,&nbsp;Pranav Shinde ,&nbsp;Yash Firke ,&nbsp;Shivprasad Patil ,&nbsp;Pranav Mitake ,&nbsp;Samruddhi Shinde","doi":"10.1016/j.procs.2025.01.041","DOIUrl":null,"url":null,"abstract":"<div><div>Stray dogs present significant public health and safety risks, particularly in developing countries like India, where the stray dog population is the largest globally. This paper details the implementation of a Stray Dog Detection System using the YOLOv5 object detection model to automatically detect and track stray dogs in real time via CCTV feeds. YOLOv5’s high accuracy and real-time processing capabilities make it well-suited for detecting stray dogs in complex, crowded urban environments. The system leverages a YOLOv5 model trained on custom datasets tailored to local conditions, including specific dog breeds and deployment environments. It integrates an alert mechanism that triggers when stray dog populations surpass predefined thresholds, allowing timely interventions. Additionally, the system incorporates geographic mapping to provide data-driven insights for municipal authorities to manage stray populations effectively and ethically. Experimental results demonstrate an F1 score of 0.97, validating the system’s robustness for practical deployment. This paper discusses system architecture, implementation, and performance, highlighting its scalability and cost-effectiveness for humane stray dog population control.</div></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"252 ","pages":"Pages 806-813"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stray Dog Detection System using YOLOv5\",\"authors\":\"Ashwini Bhosale ,&nbsp;Pranav Shinde ,&nbsp;Yash Firke ,&nbsp;Shivprasad Patil ,&nbsp;Pranav Mitake ,&nbsp;Samruddhi Shinde\",\"doi\":\"10.1016/j.procs.2025.01.041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Stray dogs present significant public health and safety risks, particularly in developing countries like India, where the stray dog population is the largest globally. This paper details the implementation of a Stray Dog Detection System using the YOLOv5 object detection model to automatically detect and track stray dogs in real time via CCTV feeds. YOLOv5’s high accuracy and real-time processing capabilities make it well-suited for detecting stray dogs in complex, crowded urban environments. The system leverages a YOLOv5 model trained on custom datasets tailored to local conditions, including specific dog breeds and deployment environments. It integrates an alert mechanism that triggers when stray dog populations surpass predefined thresholds, allowing timely interventions. Additionally, the system incorporates geographic mapping to provide data-driven insights for municipal authorities to manage stray populations effectively and ethically. Experimental results demonstrate an F1 score of 0.97, validating the system’s robustness for practical deployment. This paper discusses system architecture, implementation, and performance, highlighting its scalability and cost-effectiveness for humane stray dog population control.</div></div>\",\"PeriodicalId\":20465,\"journal\":{\"name\":\"Procedia Computer Science\",\"volume\":\"252 \",\"pages\":\"Pages 806-813\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877050925000419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050925000419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

流浪狗对公共健康和安全构成重大风险,特别是在印度等发展中国家,那里的流浪狗数量是全球最多的。本文详细介绍了利用YOLOv5目标检测模型实现的流浪狗检测系统,通过CCTV视频实时自动检测和跟踪流浪狗。YOLOv5的高精度和实时处理能力使其非常适合在复杂拥挤的城市环境中检测流浪狗。该系统利用了YOLOv5模型,该模型是根据当地条件定制的数据集训练的,包括特定的犬种和部署环境。它集成了一个警报机制,当流浪狗数量超过预定义的阈值时触发,允许及时干预。此外,该系统还结合了地理地图,为市政当局有效和合乎道德地管理流浪人口提供数据驱动的见解。实验结果表明,该系统的F1得分为0.97,验证了系统对实际部署的鲁棒性。本文讨论了系统的架构、实现和性能,强调了其可扩展性和成本效益,用于人道流浪狗种群控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stray Dog Detection System using YOLOv5
Stray dogs present significant public health and safety risks, particularly in developing countries like India, where the stray dog population is the largest globally. This paper details the implementation of a Stray Dog Detection System using the YOLOv5 object detection model to automatically detect and track stray dogs in real time via CCTV feeds. YOLOv5’s high accuracy and real-time processing capabilities make it well-suited for detecting stray dogs in complex, crowded urban environments. The system leverages a YOLOv5 model trained on custom datasets tailored to local conditions, including specific dog breeds and deployment environments. It integrates an alert mechanism that triggers when stray dog populations surpass predefined thresholds, allowing timely interventions. Additionally, the system incorporates geographic mapping to provide data-driven insights for municipal authorities to manage stray populations effectively and ethically. Experimental results demonstrate an F1 score of 0.97, validating the system’s robustness for practical deployment. This paper discusses system architecture, implementation, and performance, highlighting its scalability and cost-effectiveness for humane stray dog population control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信