非线性光学系统中的分岔路径花园

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Lucas Sarrazin , Mathias Marconi , Massimo Giudici , Myriam Nonaka , Monica Agüero , Alejandro Hnilo , Marcelo Kovalsky , Karin Alfaro-Bittner , Jorge Tredicce
{"title":"非线性光学系统中的分岔路径花园","authors":"Lucas Sarrazin ,&nbsp;Mathias Marconi ,&nbsp;Massimo Giudici ,&nbsp;Myriam Nonaka ,&nbsp;Monica Agüero ,&nbsp;Alejandro Hnilo ,&nbsp;Marcelo Kovalsky ,&nbsp;Karin Alfaro-Bittner ,&nbsp;Jorge Tredicce","doi":"10.1016/j.physd.2025.134553","DOIUrl":null,"url":null,"abstract":"<div><div>We study both theoretically and experimentally the dynamical behavior of a Class B laser with modulated losses. We focus our attention on the response of the system as we sweep the modulation frequency. The nonlinearity of the system introduces a multistability of the laser intensity at resonance but also at subharmonics of the resonance and at harmonics of it. In general subharmonics and harmonics resonances in conjunction with low dissipation are at the origin of multistability in nonlinear dynamical systems. We show the response in intensity for low values of the modulation amplitude. We put in evidence the generation of harmonics of the modulation frequency at subharmonics resonances of the system. The experimental results are in very good agreement with the numerical results obtained from the most simple dynamical model for such type of lasers.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"473 ","pages":"Article 134553"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Garden of bifurcating paths in a nonlinear optical system\",\"authors\":\"Lucas Sarrazin ,&nbsp;Mathias Marconi ,&nbsp;Massimo Giudici ,&nbsp;Myriam Nonaka ,&nbsp;Monica Agüero ,&nbsp;Alejandro Hnilo ,&nbsp;Marcelo Kovalsky ,&nbsp;Karin Alfaro-Bittner ,&nbsp;Jorge Tredicce\",\"doi\":\"10.1016/j.physd.2025.134553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study both theoretically and experimentally the dynamical behavior of a Class B laser with modulated losses. We focus our attention on the response of the system as we sweep the modulation frequency. The nonlinearity of the system introduces a multistability of the laser intensity at resonance but also at subharmonics of the resonance and at harmonics of it. In general subharmonics and harmonics resonances in conjunction with low dissipation are at the origin of multistability in nonlinear dynamical systems. We show the response in intensity for low values of the modulation amplitude. We put in evidence the generation of harmonics of the modulation frequency at subharmonics resonances of the system. The experimental results are in very good agreement with the numerical results obtained from the most simple dynamical model for such type of lasers.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"473 \",\"pages\":\"Article 134553\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278925000326\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925000326","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文从理论和实验两方面研究了具有调制损耗的B类激光器的动力学行为。我们将注意力集中在扫描调制频率时系统的响应上。系统的非线性导致激光强度在共振、共振次谐波和共振次谐波处具有多重稳定性。一般说来,伴随低耗散的次谐波和次谐波共振是非线性动力系统多稳定性的根源。我们展示了低调制幅值时的响应强度。我们证明了在系统的次谐波共振处调制频率的谐波产生。实验结果与该类型激光器最简单的动力学模型的数值结果吻合得很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Garden of bifurcating paths in a nonlinear optical system
We study both theoretically and experimentally the dynamical behavior of a Class B laser with modulated losses. We focus our attention on the response of the system as we sweep the modulation frequency. The nonlinearity of the system introduces a multistability of the laser intensity at resonance but also at subharmonics of the resonance and at harmonics of it. In general subharmonics and harmonics resonances in conjunction with low dissipation are at the origin of multistability in nonlinear dynamical systems. We show the response in intensity for low values of the modulation amplitude. We put in evidence the generation of harmonics of the modulation frequency at subharmonics resonances of the system. The experimental results are in very good agreement with the numerical results obtained from the most simple dynamical model for such type of lasers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信