基于互信息聚类的嵌入式滤波蚁群算法

IF 0.9 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
S. Kumar Reddy Mallidi, Rajeswara Rao Ramisetty
{"title":"基于互信息聚类的嵌入式滤波蚁群算法","authors":"S. Kumar Reddy Mallidi, Rajeswara Rao Ramisetty","doi":"10.1007/s10878-025-01259-6","DOIUrl":null,"url":null,"abstract":"<p>The performance of machine learning algorithms is significantly influenced by the quality of the underlying dataset, which often comprises a mix of essential and redundant features. Feature selection, which identifies and discards these redundant features, plays a pivotal role in reducing computational and storage overheads. Current methodologies for this task primarily span filter-based and wrapper-based techniques. While Ant Colony Optimization, a popular bio-inspired meta-heuristic technique, has been extensively used for feature selection, employing mutual information as a principal heuristic measure, traditional mutual information is primarily suited for categorical features. To address this limitation, this study introduces an Embedded-Filter Ant Colony Optimization feature selection strategy that incorporates Clustering-Based Mutual Information. This integration offers enhanced support for classification tasks involving continuous features. To validate the efficiency of the proposed approach, various datasets were used, and a diverse range of machine learning algorithms were employed to evaluate the derived feature subsets. In addition to comparing the proposed method with Grey Wolf Optimization and Cuckoo Search Optimization-based feature selection approaches, a comprehensive evaluation was also carried out against established Ant Colony Optimization wrapper techniques. Experimental results indicate that the proposed Embedded-Filter Ant Colony Optimization consistently selects the minimal yet most relevant feature set while largely maintaining the efficacy of machine learning algorithms.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"9 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embedded-filter ACO using clustering based mutual information for feature selection\",\"authors\":\"S. Kumar Reddy Mallidi, Rajeswara Rao Ramisetty\",\"doi\":\"10.1007/s10878-025-01259-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The performance of machine learning algorithms is significantly influenced by the quality of the underlying dataset, which often comprises a mix of essential and redundant features. Feature selection, which identifies and discards these redundant features, plays a pivotal role in reducing computational and storage overheads. Current methodologies for this task primarily span filter-based and wrapper-based techniques. While Ant Colony Optimization, a popular bio-inspired meta-heuristic technique, has been extensively used for feature selection, employing mutual information as a principal heuristic measure, traditional mutual information is primarily suited for categorical features. To address this limitation, this study introduces an Embedded-Filter Ant Colony Optimization feature selection strategy that incorporates Clustering-Based Mutual Information. This integration offers enhanced support for classification tasks involving continuous features. To validate the efficiency of the proposed approach, various datasets were used, and a diverse range of machine learning algorithms were employed to evaluate the derived feature subsets. In addition to comparing the proposed method with Grey Wolf Optimization and Cuckoo Search Optimization-based feature selection approaches, a comprehensive evaluation was also carried out against established Ant Colony Optimization wrapper techniques. Experimental results indicate that the proposed Embedded-Filter Ant Colony Optimization consistently selects the minimal yet most relevant feature set while largely maintaining the efficacy of machine learning algorithms.</p>\",\"PeriodicalId\":50231,\"journal\":{\"name\":\"Journal of Combinatorial Optimization\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10878-025-01259-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-025-01259-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

机器学习算法的性能受到底层数据集质量的显著影响,底层数据集通常包含基本和冗余特征的混合。特征选择识别和丢弃这些冗余特征,在减少计算和存储开销方面起着关键作用。当前用于此任务的方法主要包括基于过滤器和基于包装器的技术。蚁群优化是一种流行的启发生物的元启发式技术,已广泛用于特征选择,采用互信息作为主要的启发式度量,传统的互信息主要适用于分类特征。为了解决这一限制,本研究引入了一种嵌入滤波器的蚁群优化特征选择策略,该策略结合了基于聚类的互信息。这种集成为涉及连续特性的分类任务提供了增强的支持。为了验证所提出方法的有效性,使用了各种数据集,并使用了各种机器学习算法来评估派生的特征子集。除了将该方法与基于灰狼优化和布谷鸟搜索优化的特征选择方法进行比较外,还对已有的蚁群优化包装技术进行了综合评价。实验结果表明,所提出的嵌入滤波器蚁群优化算法在很大程度上保持了机器学习算法的有效性的同时,始终如一地选择最小但最相关的特征集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedded-filter ACO using clustering based mutual information for feature selection

The performance of machine learning algorithms is significantly influenced by the quality of the underlying dataset, which often comprises a mix of essential and redundant features. Feature selection, which identifies and discards these redundant features, plays a pivotal role in reducing computational and storage overheads. Current methodologies for this task primarily span filter-based and wrapper-based techniques. While Ant Colony Optimization, a popular bio-inspired meta-heuristic technique, has been extensively used for feature selection, employing mutual information as a principal heuristic measure, traditional mutual information is primarily suited for categorical features. To address this limitation, this study introduces an Embedded-Filter Ant Colony Optimization feature selection strategy that incorporates Clustering-Based Mutual Information. This integration offers enhanced support for classification tasks involving continuous features. To validate the efficiency of the proposed approach, various datasets were used, and a diverse range of machine learning algorithms were employed to evaluate the derived feature subsets. In addition to comparing the proposed method with Grey Wolf Optimization and Cuckoo Search Optimization-based feature selection approaches, a comprehensive evaluation was also carried out against established Ant Colony Optimization wrapper techniques. Experimental results indicate that the proposed Embedded-Filter Ant Colony Optimization consistently selects the minimal yet most relevant feature set while largely maintaining the efficacy of machine learning algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorial Optimization
Journal of Combinatorial Optimization 数学-计算机:跨学科应用
CiteScore
2.00
自引率
10.00%
发文量
83
审稿时长
6 months
期刊介绍: The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering. The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信