β2整合素调节创伤性脑损伤后中性粒细胞跨内皮迁移。

IF 8.2 2区 生物学 Q1 CELL BIOLOGY
Lei Li, Ruilong Peng, Cong Wang, Xin Chen, Dilmurat Gheyret, Siyu Guan, Bo Chen, Yafan Liu, Xilei Liu, Yiyao Cao, Cha Han, Jianhua Xiong, Fanjian Li, Taoyuan Lu, Haoran Jia, Kaiji Li, Jinchao Wang, Xu Zhang, Jianye Xu, Yajuan Wang, Xin Xu, Tuo Li, Jianning Zhang, Shu Zhang
{"title":"β2整合素调节创伤性脑损伤后中性粒细胞跨内皮迁移。","authors":"Lei Li, Ruilong Peng, Cong Wang, Xin Chen, Dilmurat Gheyret, Siyu Guan, Bo Chen, Yafan Liu, Xilei Liu, Yiyao Cao, Cha Han, Jianhua Xiong, Fanjian Li, Taoyuan Lu, Haoran Jia, Kaiji Li, Jinchao Wang, Xu Zhang, Jianye Xu, Yajuan Wang, Xin Xu, Tuo Li, Jianning Zhang, Shu Zhang","doi":"10.1186/s12964-025-02071-9","DOIUrl":null,"url":null,"abstract":"<p><p>Neutrophils are the first responders among peripheral immune cells to infiltrate the central nervous system following a traumatic brain injury (TBI), triggering neuroinflammation that can exacerbate secondary tissue damage. The precise molecular controls that dictate the inflammatory behavior of neutrophils post-TBI, however, remain largely elusive. Our comprehensive analysis of the molecular landscape surrounding the trauma in TBI mice has revealed a significant alteration in the abundance of β2 integrin (ITGB2), predominantly expressed by neutrophils and closely associated with immune responses. Using the fluid percussion injury (FPI) mouse model, we investigated the therapeutic efficacy of Rovelizumab, an agent that blocks ITGB2. The treatment has demonstrated significant improvements in neurologic function in TBI mice, attenuating blood-brain barrier permeability, mitigating oxidative stress and inflammatory mediator release, and enhancing cerebral perfusion. Moreover, ITGB2 blockade has effectively limited the adherence, migration, and infiltration of neutrophils, and has impeded the formation of neutrophil extracellular traps (NETs) upon their activation. Finally, it was demonstrated that ITGB2 mediates these effects mainly through its interaction with intercellular adhesion molecule-1 (ICAM 1) of endotheliocyte. These findings collectively illuminate ITGB2 as a crucial molecular switch that governs the adverse effects of neutrophils post-TBI and could be targeted to improve clinical outcome in patients.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"70"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806581/pdf/","citationCount":"0","resultStr":"{\"title\":\"β2 integrin regulates neutrophil trans endothelial migration following traumatic brain injury.\",\"authors\":\"Lei Li, Ruilong Peng, Cong Wang, Xin Chen, Dilmurat Gheyret, Siyu Guan, Bo Chen, Yafan Liu, Xilei Liu, Yiyao Cao, Cha Han, Jianhua Xiong, Fanjian Li, Taoyuan Lu, Haoran Jia, Kaiji Li, Jinchao Wang, Xu Zhang, Jianye Xu, Yajuan Wang, Xin Xu, Tuo Li, Jianning Zhang, Shu Zhang\",\"doi\":\"10.1186/s12964-025-02071-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neutrophils are the first responders among peripheral immune cells to infiltrate the central nervous system following a traumatic brain injury (TBI), triggering neuroinflammation that can exacerbate secondary tissue damage. The precise molecular controls that dictate the inflammatory behavior of neutrophils post-TBI, however, remain largely elusive. Our comprehensive analysis of the molecular landscape surrounding the trauma in TBI mice has revealed a significant alteration in the abundance of β2 integrin (ITGB2), predominantly expressed by neutrophils and closely associated with immune responses. Using the fluid percussion injury (FPI) mouse model, we investigated the therapeutic efficacy of Rovelizumab, an agent that blocks ITGB2. The treatment has demonstrated significant improvements in neurologic function in TBI mice, attenuating blood-brain barrier permeability, mitigating oxidative stress and inflammatory mediator release, and enhancing cerebral perfusion. Moreover, ITGB2 blockade has effectively limited the adherence, migration, and infiltration of neutrophils, and has impeded the formation of neutrophil extracellular traps (NETs) upon their activation. Finally, it was demonstrated that ITGB2 mediates these effects mainly through its interaction with intercellular adhesion molecule-1 (ICAM 1) of endotheliocyte. These findings collectively illuminate ITGB2 as a crucial molecular switch that governs the adverse effects of neutrophils post-TBI and could be targeted to improve clinical outcome in patients.</p>\",\"PeriodicalId\":55268,\"journal\":{\"name\":\"Cell Communication and Signaling\",\"volume\":\"23 1\",\"pages\":\"70\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806581/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Communication and Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12964-025-02071-9\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-025-02071-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

中性粒细胞是外伤性脑损伤(TBI)后浸润中枢神经系统的外周免疫细胞中的第一反应者,引发神经炎症,可加重继发性组织损伤。然而,tbi后中性粒细胞炎症行为的精确分子控制在很大程度上仍然难以捉摸。我们对TBI小鼠创伤周围的分子景观进行了综合分析,揭示了β2整合素(ITGB2)丰度的显著改变,ITGB2主要由中性粒细胞表达,与免疫反应密切相关。采用液体冲击损伤(FPI)小鼠模型,我们研究了阻断ITGB2的Rovelizumab的治疗效果。该治疗方法显著改善了TBI小鼠的神经功能,降低了血脑屏障的通透性,减轻了氧化应激和炎症介质的释放,增强了脑灌注。此外,ITGB2阻断有效地限制了中性粒细胞的粘附、迁移和浸润,并阻碍了中性粒细胞胞外陷阱(NETs)激活后的形成。最后,研究表明ITGB2主要通过与内皮细胞的细胞间粘附分子-1 (ICAM -1)相互作用介导这些作用。这些发现共同说明ITGB2是控制脑外伤后中性粒细胞不良反应的关键分子开关,可以靶向改善患者的临床结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
β2 integrin regulates neutrophil trans endothelial migration following traumatic brain injury.

Neutrophils are the first responders among peripheral immune cells to infiltrate the central nervous system following a traumatic brain injury (TBI), triggering neuroinflammation that can exacerbate secondary tissue damage. The precise molecular controls that dictate the inflammatory behavior of neutrophils post-TBI, however, remain largely elusive. Our comprehensive analysis of the molecular landscape surrounding the trauma in TBI mice has revealed a significant alteration in the abundance of β2 integrin (ITGB2), predominantly expressed by neutrophils and closely associated with immune responses. Using the fluid percussion injury (FPI) mouse model, we investigated the therapeutic efficacy of Rovelizumab, an agent that blocks ITGB2. The treatment has demonstrated significant improvements in neurologic function in TBI mice, attenuating blood-brain barrier permeability, mitigating oxidative stress and inflammatory mediator release, and enhancing cerebral perfusion. Moreover, ITGB2 blockade has effectively limited the adherence, migration, and infiltration of neutrophils, and has impeded the formation of neutrophil extracellular traps (NETs) upon their activation. Finally, it was demonstrated that ITGB2 mediates these effects mainly through its interaction with intercellular adhesion molecule-1 (ICAM 1) of endotheliocyte. These findings collectively illuminate ITGB2 as a crucial molecular switch that governs the adverse effects of neutrophils post-TBI and could be targeted to improve clinical outcome in patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
180
期刊介绍: Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior. Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信