基于机器学习驱动的CSP、STFT和CSP-STFT融合的脑机接口管道中多个冥想和非冥想时段脑电数据分类的比较分析

Q1 Computer Science
Nalinda D Liyanagedera, Corinne A Bareham, Heather Kempton, Hans W Guesgen
{"title":"基于机器学习驱动的CSP、STFT和CSP-STFT融合的脑机接口管道中多个冥想和非冥想时段脑电数据分类的比较分析","authors":"Nalinda D Liyanagedera, Corinne A Bareham, Heather Kempton, Hans W Guesgen","doi":"10.1186/s40708-025-00251-4","DOIUrl":null,"url":null,"abstract":"<p><p>This study focuses on classifying multiple sessions of loving kindness meditation (LKM) and non-meditation electroencephalography (EEG) data. This novel study focuses on using multiple sessions of EEG data from a single individual to train a machine learning pipeline, and then using a new session data from the same individual for the classification. Here, two meditation techniques, LKM-Self and LKM-Others were compared with non-meditation EEG data for 12 participants. Among many tested, three BCI pipelines we built produced promising results, successfully detecting features in meditation/ non-meditation EEG data. While testing different feature extraction algorithms, a common neural network structure was used as the classification algorithm to compare the performance of the feature extraction algorithms. For two of those pipelines, Common Spatial Patterns (CSP) and Short Time Fourier Transform (STFT) were successfully used as feature extraction algorithms where both these algorithms are significantly new for meditation EEG. As a novel concept, the third BCI pipeline used a feature extraction algorithm that fused the features of CSP and STFT, achieving the highest classification accuracies among all tested pipelines. Analyses were conducted using EEG data of 3, 4 or 5 sessions, totaling 3960 tests on the entire dataset. At the end of the study, when considering all the tests, the overall classification accuracy using SCP alone was 67.1%, and it was 67.8% for STFT alone. The algorithm combining the features of CSP and STFT achieved an overall classification accuracy of 72.9% which is more than 5% higher than the other two pipelines. At the same time, the highest mean classification accuracy for the 12 participants was achieved using the pipeline with the combination of CSP STFT algorithm, reaching 75.5% for LKM-Self/ non-meditation for the case of 5 sessions of data. Additionally, the highest individual classification accuracy of 88.9% was obtained by the participant no. 14. Furthermore, the results showed that the classification accuracies for all three pipelines increased with the number of training sessions increased from 2 to 3 and then to 4. The study was successful in classifying a new session of EEG meditation/ non-meditation data after training machine learning algorithms using a different set of session data, and this achievement will be beneficial in the development of algorithms that support meditation.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"12 1","pages":"4"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11807047/pdf/","citationCount":"0","resultStr":"{\"title\":\"Novel machine learning-driven comparative analysis of CSP, STFT, and CSP-STFT fusion for EEG data classification across multiple meditation and non-meditation sessions in BCI pipeline.\",\"authors\":\"Nalinda D Liyanagedera, Corinne A Bareham, Heather Kempton, Hans W Guesgen\",\"doi\":\"10.1186/s40708-025-00251-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study focuses on classifying multiple sessions of loving kindness meditation (LKM) and non-meditation electroencephalography (EEG) data. This novel study focuses on using multiple sessions of EEG data from a single individual to train a machine learning pipeline, and then using a new session data from the same individual for the classification. Here, two meditation techniques, LKM-Self and LKM-Others were compared with non-meditation EEG data for 12 participants. Among many tested, three BCI pipelines we built produced promising results, successfully detecting features in meditation/ non-meditation EEG data. While testing different feature extraction algorithms, a common neural network structure was used as the classification algorithm to compare the performance of the feature extraction algorithms. For two of those pipelines, Common Spatial Patterns (CSP) and Short Time Fourier Transform (STFT) were successfully used as feature extraction algorithms where both these algorithms are significantly new for meditation EEG. As a novel concept, the third BCI pipeline used a feature extraction algorithm that fused the features of CSP and STFT, achieving the highest classification accuracies among all tested pipelines. Analyses were conducted using EEG data of 3, 4 or 5 sessions, totaling 3960 tests on the entire dataset. At the end of the study, when considering all the tests, the overall classification accuracy using SCP alone was 67.1%, and it was 67.8% for STFT alone. The algorithm combining the features of CSP and STFT achieved an overall classification accuracy of 72.9% which is more than 5% higher than the other two pipelines. At the same time, the highest mean classification accuracy for the 12 participants was achieved using the pipeline with the combination of CSP STFT algorithm, reaching 75.5% for LKM-Self/ non-meditation for the case of 5 sessions of data. Additionally, the highest individual classification accuracy of 88.9% was obtained by the participant no. 14. Furthermore, the results showed that the classification accuracies for all three pipelines increased with the number of training sessions increased from 2 to 3 and then to 4. The study was successful in classifying a new session of EEG meditation/ non-meditation data after training machine learning algorithms using a different set of session data, and this achievement will be beneficial in the development of algorithms that support meditation.</p>\",\"PeriodicalId\":37465,\"journal\":{\"name\":\"Brain Informatics\",\"volume\":\"12 1\",\"pages\":\"4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11807047/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40708-025-00251-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-025-00251-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是对多时段仁爱冥想(LKM)和非冥想脑电图(EEG)数据进行分类。这项新颖的研究侧重于使用来自单个个体的多会话脑电图数据来训练机器学习管道,然后使用来自同一个体的新会话数据进行分类。本研究将12名参与者的两种冥想方法——LKM-Self和LKM-Others与非冥想的脑电图数据进行了比较。在许多测试中,我们建立的三个脑机接口管道产生了令人鼓舞的结果,成功地检测了冥想/非冥想脑电图数据的特征。在测试不同特征提取算法的同时,采用一种通用的神经网络结构作为分类算法,比较不同特征提取算法的性能。对于其中两个管道,我们成功地使用了公共空间模式(CSP)和短时傅里叶变换(STFT)作为特征提取算法,这两种算法对于冥想脑电图来说都是非常新颖的。作为一个新颖的概念,第三个BCI管道使用了融合CSP和STFT特征的特征提取算法,在所有测试管道中实现了最高的分类准确率。使用3次、4次或5次的脑电图数据进行分析,对整个数据集进行了总共3960次测试。研究结束时,综合考虑所有测试,单独使用SCP的分类准确率为67.1%,单独使用STFT的分类准确率为67.8%。该算法结合了CSP和STFT的特征,总体分类准确率达到72.9%,比其他两种管道高出5%以上。同时,结合CSP STFT算法的流水线对12个参与者的平均分类准确率最高,在5次数据的情况下,LKM-Self/ non-meditation的分类准确率达到75.5%。此外,参与者编号为88.9%的个体分类准确率最高。14. 此外,结果表明,随着训练次数从2次增加到3次,再增加到4次,三种管道的分类准确率都有所增加。在使用不同的会话数据集训练机器学习算法后,该研究成功地对新会话的EEG冥想/非冥想数据进行了分类,这一成就将有助于开发支持冥想的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel machine learning-driven comparative analysis of CSP, STFT, and CSP-STFT fusion for EEG data classification across multiple meditation and non-meditation sessions in BCI pipeline.

This study focuses on classifying multiple sessions of loving kindness meditation (LKM) and non-meditation electroencephalography (EEG) data. This novel study focuses on using multiple sessions of EEG data from a single individual to train a machine learning pipeline, and then using a new session data from the same individual for the classification. Here, two meditation techniques, LKM-Self and LKM-Others were compared with non-meditation EEG data for 12 participants. Among many tested, three BCI pipelines we built produced promising results, successfully detecting features in meditation/ non-meditation EEG data. While testing different feature extraction algorithms, a common neural network structure was used as the classification algorithm to compare the performance of the feature extraction algorithms. For two of those pipelines, Common Spatial Patterns (CSP) and Short Time Fourier Transform (STFT) were successfully used as feature extraction algorithms where both these algorithms are significantly new for meditation EEG. As a novel concept, the third BCI pipeline used a feature extraction algorithm that fused the features of CSP and STFT, achieving the highest classification accuracies among all tested pipelines. Analyses were conducted using EEG data of 3, 4 or 5 sessions, totaling 3960 tests on the entire dataset. At the end of the study, when considering all the tests, the overall classification accuracy using SCP alone was 67.1%, and it was 67.8% for STFT alone. The algorithm combining the features of CSP and STFT achieved an overall classification accuracy of 72.9% which is more than 5% higher than the other two pipelines. At the same time, the highest mean classification accuracy for the 12 participants was achieved using the pipeline with the combination of CSP STFT algorithm, reaching 75.5% for LKM-Self/ non-meditation for the case of 5 sessions of data. Additionally, the highest individual classification accuracy of 88.9% was obtained by the participant no. 14. Furthermore, the results showed that the classification accuracies for all three pipelines increased with the number of training sessions increased from 2 to 3 and then to 4. The study was successful in classifying a new session of EEG meditation/ non-meditation data after training machine learning algorithms using a different set of session data, and this achievement will be beneficial in the development of algorithms that support meditation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Informatics
Brain Informatics Computer Science-Computer Science Applications
CiteScore
9.50
自引率
0.00%
发文量
27
审稿时长
13 weeks
期刊介绍: Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信