外源性硫化氢通过抑制内质网应激/NLRP3炎性体途径改善非酒精性脂肪肝

IF 3.5 2区 生物学 Q3 CELL BIOLOGY
Molecular and Cellular Biochemistry Pub Date : 2025-06-01 Epub Date: 2025-02-08 DOI:10.1007/s11010-025-05220-3
Xiaodi Fu, Qi Zhang, Yuhang Chen, Ying Li, Honggang Wang
{"title":"外源性硫化氢通过抑制内质网应激/NLRP3炎性体途径改善非酒精性脂肪肝","authors":"Xiaodi Fu, Qi Zhang, Yuhang Chen, Ying Li, Honggang Wang","doi":"10.1007/s11010-025-05220-3","DOIUrl":null,"url":null,"abstract":"<p><p>Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease worldwide, and its exact pathogenesis has not been fully studied. Hydrogen sulfide (H<sub>2</sub>S) is the third gas signaling molecule discovered in mammals, following nitric oxide and carbon monoxide. It has the effects of anti-inflammation, anti-apoptosis, and so on, thereby playing an important role in many diseases. However, the role and mechanism of exogenous H<sub>2</sub>S in NAFLD are not fully understood. In this study, we constructed in vitro and in vivo NAFLD models by feeding mice a high-fat diet and stimulating hepatocytes with palmitic acid, respectively, to investigate the improvement effect and mechanism of exogenous H<sub>2</sub>S on NAFLD. The results showed that NaHS (a donor of H<sub>2</sub>S) treatment alleviated lipid accumulation, inflammation, apoptosis and pyroptosis, and downregulated endoplasmic reticulum (ER) stress and nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NRRP3) inflammasome in NAFLD. The activation of NLRP3 inflammasome weakened NaHS improvement of NAFLD, indicating that exogenous H<sub>2</sub>S ameliorated NAFLD by inhibiting NLRP3 inflammasome-mediated lipid synthesis, inflammation, apoptosis and pyroptosis. Similarly, the activation of ER stress weakened NaHS improvement of NAFLD and NaHS inhibition of NLRP3 inflammasome, indicating that exogenous H<sub>2</sub>S suppressed NLRP3 inflammasome by downregulating ER stress, thus improving NAFLD. Additionally, the protein expressions of NLRP3 and cleaved caspase-1 were downregulated after inhibiting the reactive oxygen species (ROS)/extracellular signal-regulated kinases (ERK) and ROS/thioredoxin-interacting protein (TXNIP) pathways, indicating that ER stress activated NLRP3 inflammasome through the ROS/ERK and ROS/TXNIP pathways. In conclusion, our results indicated that exogenous H<sub>2</sub>S inhibited NLRP3 inflammasome-mediated hepatocytes inflammation, lipid synthesis, apoptosis and pyroptosis by downregulating ER stress, thereby improving NAFLD; Furthermore, ER stress activated NLRP3 inflammasome through the ROS/ERK and ROS/TXNIP pathways in NAFLD. ER stress/NLRP3 inflammasome is expected to become a new target of H<sub>2</sub>S for treating NAFLD.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"3813-3839"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exogenous hydrogen sulfide improves non-alcoholic fatty liver disease by inhibiting endoplasmic reticulum stress/NLRP3 inflammasome pathway.\",\"authors\":\"Xiaodi Fu, Qi Zhang, Yuhang Chen, Ying Li, Honggang Wang\",\"doi\":\"10.1007/s11010-025-05220-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease worldwide, and its exact pathogenesis has not been fully studied. Hydrogen sulfide (H<sub>2</sub>S) is the third gas signaling molecule discovered in mammals, following nitric oxide and carbon monoxide. It has the effects of anti-inflammation, anti-apoptosis, and so on, thereby playing an important role in many diseases. However, the role and mechanism of exogenous H<sub>2</sub>S in NAFLD are not fully understood. In this study, we constructed in vitro and in vivo NAFLD models by feeding mice a high-fat diet and stimulating hepatocytes with palmitic acid, respectively, to investigate the improvement effect and mechanism of exogenous H<sub>2</sub>S on NAFLD. The results showed that NaHS (a donor of H<sub>2</sub>S) treatment alleviated lipid accumulation, inflammation, apoptosis and pyroptosis, and downregulated endoplasmic reticulum (ER) stress and nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NRRP3) inflammasome in NAFLD. The activation of NLRP3 inflammasome weakened NaHS improvement of NAFLD, indicating that exogenous H<sub>2</sub>S ameliorated NAFLD by inhibiting NLRP3 inflammasome-mediated lipid synthesis, inflammation, apoptosis and pyroptosis. Similarly, the activation of ER stress weakened NaHS improvement of NAFLD and NaHS inhibition of NLRP3 inflammasome, indicating that exogenous H<sub>2</sub>S suppressed NLRP3 inflammasome by downregulating ER stress, thus improving NAFLD. Additionally, the protein expressions of NLRP3 and cleaved caspase-1 were downregulated after inhibiting the reactive oxygen species (ROS)/extracellular signal-regulated kinases (ERK) and ROS/thioredoxin-interacting protein (TXNIP) pathways, indicating that ER stress activated NLRP3 inflammasome through the ROS/ERK and ROS/TXNIP pathways. In conclusion, our results indicated that exogenous H<sub>2</sub>S inhibited NLRP3 inflammasome-mediated hepatocytes inflammation, lipid synthesis, apoptosis and pyroptosis by downregulating ER stress, thereby improving NAFLD; Furthermore, ER stress activated NLRP3 inflammasome through the ROS/ERK and ROS/TXNIP pathways in NAFLD. ER stress/NLRP3 inflammasome is expected to become a new target of H<sub>2</sub>S for treating NAFLD.</p>\",\"PeriodicalId\":18724,\"journal\":{\"name\":\"Molecular and Cellular Biochemistry\",\"volume\":\" \",\"pages\":\"3813-3839\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11010-025-05220-3\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-025-05220-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

非酒精性脂肪性肝病(NAFLD)是一种世界范围内常见的慢性肝病,其确切的发病机制尚未得到充分的研究。硫化氢(H2S)是继一氧化氮和一氧化碳之后在哺乳动物体内发现的第三种气体信号分子。它具有抗炎症、抗细胞凋亡等作用,在许多疾病中发挥着重要作用。然而,外源性H2S在NAFLD中的作用和机制尚不完全清楚。在本研究中,我们分别通过高脂饮食喂养小鼠和棕榈酸刺激肝细胞构建体外和体内NAFLD模型,探讨外源性H2S对NAFLD的改善作用和机制。结果表明,NaHS (H2S供体)处理可减轻NAFLD的脂质积累、炎症、细胞凋亡和焦亡,下调内质网(ER)应激和含有pyrin结构域3的核苷酸结合寡聚结构域样受体(NRRP3)炎性体。NLRP3炎症小体的激活削弱了NaHS对NAFLD的改善,表明外源性H2S通过抑制NLRP3炎症小体介导的脂质合成、炎症、细胞凋亡和焦亡来改善NAFLD。同样,内质网应激的激活削弱了NaHS对NAFLD的改善和NaHS对NLRP3炎性体的抑制,表明外源H2S通过下调内质网应激抑制NLRP3炎性体,从而改善NAFLD。此外,在抑制活性氧(ROS)/细胞外信号调节激酶(ERK)和ROS/硫氧还蛋白相互作用蛋白(TXNIP)途径后,NLRP3和cleaved caspase-1蛋白表达下调,表明内质网应激通过ROS/ERK和ROS/TXNIP途径激活NLRP3炎性体。综上所述,我们的研究结果表明,外源性H2S通过下调内质网应激抑制NLRP3炎症小体介导的肝细胞炎症、脂质合成、凋亡和焦亡,从而改善NAFLD;此外,内质网应激在NAFLD中通过ROS/ERK和ROS/TXNIP途径激活NLRP3炎性体。内质网应激/NLRP3炎性体有望成为H2S治疗NAFLD的新靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exogenous hydrogen sulfide improves non-alcoholic fatty liver disease by inhibiting endoplasmic reticulum stress/NLRP3 inflammasome pathway.

Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease worldwide, and its exact pathogenesis has not been fully studied. Hydrogen sulfide (H2S) is the third gas signaling molecule discovered in mammals, following nitric oxide and carbon monoxide. It has the effects of anti-inflammation, anti-apoptosis, and so on, thereby playing an important role in many diseases. However, the role and mechanism of exogenous H2S in NAFLD are not fully understood. In this study, we constructed in vitro and in vivo NAFLD models by feeding mice a high-fat diet and stimulating hepatocytes with palmitic acid, respectively, to investigate the improvement effect and mechanism of exogenous H2S on NAFLD. The results showed that NaHS (a donor of H2S) treatment alleviated lipid accumulation, inflammation, apoptosis and pyroptosis, and downregulated endoplasmic reticulum (ER) stress and nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NRRP3) inflammasome in NAFLD. The activation of NLRP3 inflammasome weakened NaHS improvement of NAFLD, indicating that exogenous H2S ameliorated NAFLD by inhibiting NLRP3 inflammasome-mediated lipid synthesis, inflammation, apoptosis and pyroptosis. Similarly, the activation of ER stress weakened NaHS improvement of NAFLD and NaHS inhibition of NLRP3 inflammasome, indicating that exogenous H2S suppressed NLRP3 inflammasome by downregulating ER stress, thus improving NAFLD. Additionally, the protein expressions of NLRP3 and cleaved caspase-1 were downregulated after inhibiting the reactive oxygen species (ROS)/extracellular signal-regulated kinases (ERK) and ROS/thioredoxin-interacting protein (TXNIP) pathways, indicating that ER stress activated NLRP3 inflammasome through the ROS/ERK and ROS/TXNIP pathways. In conclusion, our results indicated that exogenous H2S inhibited NLRP3 inflammasome-mediated hepatocytes inflammation, lipid synthesis, apoptosis and pyroptosis by downregulating ER stress, thereby improving NAFLD; Furthermore, ER stress activated NLRP3 inflammasome through the ROS/ERK and ROS/TXNIP pathways in NAFLD. ER stress/NLRP3 inflammasome is expected to become a new target of H2S for treating NAFLD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular and Cellular Biochemistry
Molecular and Cellular Biochemistry 生物-细胞生物学
CiteScore
8.30
自引率
2.30%
发文量
293
审稿时长
1.7 months
期刊介绍: Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell. In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信