T细胞和生物过程中的TET-TDG轴。

IF 4.8 4区 医学 Q2 IMMUNOLOGY
Kazumasa Suzuki, Anjana Rao, Atsushi Onodera
{"title":"T细胞和生物过程中的TET-TDG轴。","authors":"Kazumasa Suzuki, Anjana Rao, Atsushi Onodera","doi":"10.1093/intimm/dxaf006","DOIUrl":null,"url":null,"abstract":"<p><p>Ten-eleven translocation (TET) proteins are dioxygenases that sequentially oxidize the methyl group of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). All three epigenetic modifications are intermediates in DNA demethylation. In the \"passive\" (replication-dependent) DNA demethylation pathway, sequential oxidation reactions by TETs are essential and modified cytosines (C) are diluted at each cycle of DNA replication. In the \"active\" (replication-independent) DNA demethylation pathway, both thymine DNA glycosylase (TDG) and TETs play important roles. TDG removes 5fC and 5caC from 5fC:G and 5caC:G base pairs and these modified bases are replaced by unmodified C via base excision repair. Through epigenetic regulation of DNA demethylation, TETs and TDG are involved in cell development, differentiation, and homeostasis. The interplay between TDG and TETs is involved in embryo development, stem cell differentiation, neural development, immune responses, and tumorigenesis. Loss-of-function mutations of TET proteins in immune cells are associated with a variety of abnormalities, including inflammation, cancer, and clonal hematopoiesis, a condition related to aging. Loss of TETs also has a significant impact on the plasticity and differentiation of T cells, which contributes to inflammation and cancer. In this review, we describe recent findings in function of TETs in T cell plasticity and differentiation and the TET-TDG axis in selected biological processes.</p>","PeriodicalId":13743,"journal":{"name":"International immunology","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The TET-TDG axis in T cells and biological processes.\",\"authors\":\"Kazumasa Suzuki, Anjana Rao, Atsushi Onodera\",\"doi\":\"10.1093/intimm/dxaf006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ten-eleven translocation (TET) proteins are dioxygenases that sequentially oxidize the methyl group of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). All three epigenetic modifications are intermediates in DNA demethylation. In the \\\"passive\\\" (replication-dependent) DNA demethylation pathway, sequential oxidation reactions by TETs are essential and modified cytosines (C) are diluted at each cycle of DNA replication. In the \\\"active\\\" (replication-independent) DNA demethylation pathway, both thymine DNA glycosylase (TDG) and TETs play important roles. TDG removes 5fC and 5caC from 5fC:G and 5caC:G base pairs and these modified bases are replaced by unmodified C via base excision repair. Through epigenetic regulation of DNA demethylation, TETs and TDG are involved in cell development, differentiation, and homeostasis. The interplay between TDG and TETs is involved in embryo development, stem cell differentiation, neural development, immune responses, and tumorigenesis. Loss-of-function mutations of TET proteins in immune cells are associated with a variety of abnormalities, including inflammation, cancer, and clonal hematopoiesis, a condition related to aging. Loss of TETs also has a significant impact on the plasticity and differentiation of T cells, which contributes to inflammation and cancer. In this review, we describe recent findings in function of TETs in T cell plasticity and differentiation and the TET-TDG axis in selected biological processes.</p>\",\"PeriodicalId\":13743,\"journal\":{\"name\":\"International immunology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/intimm/dxaf006\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/intimm/dxaf006","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

10 - 11易位(TET)蛋白是将5-甲基胞嘧啶(5mC)的甲基依次氧化为5-羟甲基胞嘧啶(5hmC)、5-甲酰胞嘧啶(5fC)和5-羧基胞嘧啶(5caC)的双加氧酶。这三种表观遗传修饰都是DNA去甲基化的中间产物。在“被动”(复制依赖)DNA去甲基化途径中,TETs的连续氧化反应是必不可少的,修饰的胞嘧啶(C)在DNA复制的每个周期中被稀释。在“活性”(复制无关的)DNA去甲基化途径中,胸腺嘧啶DNA糖基化酶(TDG)和tet都起着重要作用。TDG从5fC:G和5caC:G碱基对中去除5fC和5caC,这些修饰的碱基通过碱基切除修复被未修饰的C所取代。通过DNA去甲基化的表观遗传调控,TETs和TDG参与细胞发育、分化和稳态。TDG和TETs之间的相互作用涉及胚胎发育、干细胞分化、神经发育、免疫反应和肿瘤发生。免疫细胞中TET蛋白的功能突变丧失与多种异常有关,包括炎症、癌症和克隆造血,这是一种与衰老相关的疾病。TETs的缺失也会对T细胞的可塑性和分化产生重大影响,从而导致炎症和癌症。在这篇综述中,我们描述了最近在T细胞可塑性和分化以及TET-TDG轴在某些生物过程中的功能方面的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The TET-TDG axis in T cells and biological processes.

Ten-eleven translocation (TET) proteins are dioxygenases that sequentially oxidize the methyl group of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). All three epigenetic modifications are intermediates in DNA demethylation. In the "passive" (replication-dependent) DNA demethylation pathway, sequential oxidation reactions by TETs are essential and modified cytosines (C) are diluted at each cycle of DNA replication. In the "active" (replication-independent) DNA demethylation pathway, both thymine DNA glycosylase (TDG) and TETs play important roles. TDG removes 5fC and 5caC from 5fC:G and 5caC:G base pairs and these modified bases are replaced by unmodified C via base excision repair. Through epigenetic regulation of DNA demethylation, TETs and TDG are involved in cell development, differentiation, and homeostasis. The interplay between TDG and TETs is involved in embryo development, stem cell differentiation, neural development, immune responses, and tumorigenesis. Loss-of-function mutations of TET proteins in immune cells are associated with a variety of abnormalities, including inflammation, cancer, and clonal hematopoiesis, a condition related to aging. Loss of TETs also has a significant impact on the plasticity and differentiation of T cells, which contributes to inflammation and cancer. In this review, we describe recent findings in function of TETs in T cell plasticity and differentiation and the TET-TDG axis in selected biological processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International immunology
International immunology 医学-免疫学
CiteScore
9.30
自引率
2.30%
发文量
51
审稿时长
6-12 weeks
期刊介绍: International Immunology is an online only (from Jan 2018) journal that publishes basic research and clinical studies from all areas of immunology and includes research conducted in laboratories throughout the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信