{"title":"一类带Rabotnov核的积分-微分方程Cauchy问题中传播前沿的不存在性","authors":"I.V. Romanov, A.S. Shamaev","doi":"10.1134/S1061920824040137","DOIUrl":null,"url":null,"abstract":"<p> The Cauchy problem on the real axis for the Gurtin–Pipkin equation with the Rabotnov kernel is considered. For some special case, it is proved that there is no propagation front in this problem. </p><p> <b> DOI</b> 10.1134/S1061920824040137 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"31 4","pages":"758 - 761"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Absence of a Propagation Front in the Cauchy Problem for a Certain Integro-Differential Equation with a Rabotnov Kernel\",\"authors\":\"I.V. Romanov, A.S. Shamaev\",\"doi\":\"10.1134/S1061920824040137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> The Cauchy problem on the real axis for the Gurtin–Pipkin equation with the Rabotnov kernel is considered. For some special case, it is proved that there is no propagation front in this problem. </p><p> <b> DOI</b> 10.1134/S1061920824040137 </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"31 4\",\"pages\":\"758 - 761\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061920824040137\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920824040137","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
On the Absence of a Propagation Front in the Cauchy Problem for a Certain Integro-Differential Equation with a Rabotnov Kernel
The Cauchy problem on the real axis for the Gurtin–Pipkin equation with the Rabotnov kernel is considered. For some special case, it is proved that there is no propagation front in this problem.
期刊介绍:
Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.