耦合于克莱因-戈登场的谐波晶体流体力学漫画

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
T.V. Dudnikova
{"title":"耦合于克莱因-戈登场的谐波晶体流体力学漫画","authors":"T.V. Dudnikova","doi":"10.1134/S1061920824040034","DOIUrl":null,"url":null,"abstract":"<p> We consider a Hamiltonian system consisting of the Klein–Gordon field coupled to an infinite harmonic crystal. The dynamics of the coupled system is invariant with respect to the space translations in <span>\\(\\mathbb{Z}^d\\)</span>, <span>\\(d\\ge1\\)</span>. We study the Cauchy problem and assume that the initial date is a random function. We introduce the family of initial probability measures <span>\\(\\{\\mu_0^\\varepsilon,\\varepsilon &gt;0\\}\\)</span> depending on a small parameter <span>\\(\\varepsilon\\)</span> and slowly varying on the linear scale <span>\\(1/\\varepsilon\\)</span>. For times of order <span>\\(\\varepsilon^{-\\kappa}\\)</span>, <span>\\(\\kappa&gt;0\\)</span>, we study the asymptotics of the distributions of the random solution as <span>\\(\\varepsilon\\to0\\)</span>. In particular, we show that, for <span>\\(\\kappa=1\\)</span> and <span>\\(\\kappa=2\\)</span>, the limiting covariance is governed by the hydrodynamic equations of the Euler and Navier–Stokes type, respectively. </p><p> <b> DOI</b> 10.1134/S1061920824040034 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"31 4","pages":"606 - 621"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Caricature of Hydrodynamics for the Harmonic Crystal Coupled to a Klein–Gordon Field\",\"authors\":\"T.V. Dudnikova\",\"doi\":\"10.1134/S1061920824040034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We consider a Hamiltonian system consisting of the Klein–Gordon field coupled to an infinite harmonic crystal. The dynamics of the coupled system is invariant with respect to the space translations in <span>\\\\(\\\\mathbb{Z}^d\\\\)</span>, <span>\\\\(d\\\\ge1\\\\)</span>. We study the Cauchy problem and assume that the initial date is a random function. We introduce the family of initial probability measures <span>\\\\(\\\\{\\\\mu_0^\\\\varepsilon,\\\\varepsilon &gt;0\\\\}\\\\)</span> depending on a small parameter <span>\\\\(\\\\varepsilon\\\\)</span> and slowly varying on the linear scale <span>\\\\(1/\\\\varepsilon\\\\)</span>. For times of order <span>\\\\(\\\\varepsilon^{-\\\\kappa}\\\\)</span>, <span>\\\\(\\\\kappa&gt;0\\\\)</span>, we study the asymptotics of the distributions of the random solution as <span>\\\\(\\\\varepsilon\\\\to0\\\\)</span>. In particular, we show that, for <span>\\\\(\\\\kappa=1\\\\)</span> and <span>\\\\(\\\\kappa=2\\\\)</span>, the limiting covariance is governed by the hydrodynamic equations of the Euler and Navier–Stokes type, respectively. </p><p> <b> DOI</b> 10.1134/S1061920824040034 </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"31 4\",\"pages\":\"606 - 621\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061920824040034\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920824040034","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑一个由克莱因-戈登场耦合到无限谐波晶体的哈密顿系统。耦合系统的动力学对于\(\mathbb{Z}^d\), \(d\ge1\)中的空间平移是不变的。我们研究柯西问题,并假设初始日期是一个随机函数。我们引入了初始概率测度族\(\{\mu_0^\varepsilon,\varepsilon >0\}\),它依赖于一个小参数\(\varepsilon\),在线性尺度上缓慢变化\(1/\varepsilon\)。对于\(\varepsilon^{-\kappa}\), \(\kappa>0\)阶,我们研究了\(\varepsilon\to0\)阶随机解分布的渐近性。特别地,我们表明,对于\(\kappa=1\)和\(\kappa=2\),极限协方差分别由Euler和Navier-Stokes型水动力方程控制。Doi 10.1134/ s1061920824040034
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Caricature of Hydrodynamics for the Harmonic Crystal Coupled to a Klein–Gordon Field

We consider a Hamiltonian system consisting of the Klein–Gordon field coupled to an infinite harmonic crystal. The dynamics of the coupled system is invariant with respect to the space translations in \(\mathbb{Z}^d\), \(d\ge1\). We study the Cauchy problem and assume that the initial date is a random function. We introduce the family of initial probability measures \(\{\mu_0^\varepsilon,\varepsilon >0\}\) depending on a small parameter \(\varepsilon\) and slowly varying on the linear scale \(1/\varepsilon\). For times of order \(\varepsilon^{-\kappa}\), \(\kappa>0\), we study the asymptotics of the distributions of the random solution as \(\varepsilon\to0\). In particular, we show that, for \(\kappa=1\) and \(\kappa=2\), the limiting covariance is governed by the hydrodynamic equations of the Euler and Navier–Stokes type, respectively.

DOI 10.1134/S1061920824040034

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信