一种采用并行检测和抗噪声技术的新型漂移检测方法

IF 3.5 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Qian Zhang, Guanjun Liu
{"title":"一种采用并行检测和抗噪声技术的新型漂移检测方法","authors":"Qian Zhang,&nbsp;Guanjun Liu","doi":"10.1007/s10489-024-05988-9","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid development of the Internet industry, a large amount of streaming data with significant application value will be generated on the Internet. The distribution of stream data is evolving over time compared to traditional data, posing a significant challenge in the learning process from streaming data. In order to adapt the change of data distribution, concept drift detection methods are proposed to pinpoint when the concept drift occurs. Most existing drift detection methods, however, overlook the improvement of the current classifier and the influence of noise data on drift detection. This oversight leads to a decrease in the effectiveness of drift detection. In this paper, we propose a novel adaptation drift detection method to overcome the shortcomings of previous algorithms, such as error detection and lack of anti-noise capability. Meanwhile, stream computing and parallel computing are used to enhance the efficiency of our algorithm. The results of a simulation experiment on 9 synthetic stream data and 6 real-world stream data, all exhibiting concept drift, demonstrate that our method is more effective in handling concept drift compared to other state-of-the-art methods.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 6","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel drift detection method using parallel detection and anti-noise techniques\",\"authors\":\"Qian Zhang,&nbsp;Guanjun Liu\",\"doi\":\"10.1007/s10489-024-05988-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the rapid development of the Internet industry, a large amount of streaming data with significant application value will be generated on the Internet. The distribution of stream data is evolving over time compared to traditional data, posing a significant challenge in the learning process from streaming data. In order to adapt the change of data distribution, concept drift detection methods are proposed to pinpoint when the concept drift occurs. Most existing drift detection methods, however, overlook the improvement of the current classifier and the influence of noise data on drift detection. This oversight leads to a decrease in the effectiveness of drift detection. In this paper, we propose a novel adaptation drift detection method to overcome the shortcomings of previous algorithms, such as error detection and lack of anti-noise capability. Meanwhile, stream computing and parallel computing are used to enhance the efficiency of our algorithm. The results of a simulation experiment on 9 synthetic stream data and 6 real-world stream data, all exhibiting concept drift, demonstrate that our method is more effective in handling concept drift compared to other state-of-the-art methods.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 6\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-024-05988-9\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-05988-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着互联网产业的快速发展,互联网将产生大量具有重要应用价值的流数据。与传统数据相比,流数据的分布随着时间的推移而变化,这对从流数据中学习的过程提出了重大挑战。为了适应数据分布的变化,提出了概念漂移检测方法来精确定位发生概念漂移的时间。然而,现有的漂移检测方法大多忽略了当前分类器的改进和噪声数据对漂移检测的影响。这种疏忽导致漂移检测的有效性降低。本文提出了一种新的自适应漂移检测方法,克服了以往算法检测误差和抗噪声能力不足的缺点。同时,采用流计算和并行计算来提高算法的效率。对9个合成流数据和6个真实流数据进行了模拟实验,结果表明,与其他先进的方法相比,我们的方法在处理概念漂移方面更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A novel drift detection method using parallel detection and anti-noise techniques

A novel drift detection method using parallel detection and anti-noise techniques

With the rapid development of the Internet industry, a large amount of streaming data with significant application value will be generated on the Internet. The distribution of stream data is evolving over time compared to traditional data, posing a significant challenge in the learning process from streaming data. In order to adapt the change of data distribution, concept drift detection methods are proposed to pinpoint when the concept drift occurs. Most existing drift detection methods, however, overlook the improvement of the current classifier and the influence of noise data on drift detection. This oversight leads to a decrease in the effectiveness of drift detection. In this paper, we propose a novel adaptation drift detection method to overcome the shortcomings of previous algorithms, such as error detection and lack of anti-noise capability. Meanwhile, stream computing and parallel computing are used to enhance the efficiency of our algorithm. The results of a simulation experiment on 9 synthetic stream data and 6 real-world stream data, all exhibiting concept drift, demonstrate that our method is more effective in handling concept drift compared to other state-of-the-art methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信