{"title":"领域自适应改进空气花粉自动分类与专家验证的测量","authors":"Predrag Matavulj, Slobodan Jelic, Domagoj Severdija, Sanja Brdar, Milos Radovanovic, Danijela Tesendic, Branko Sikoparija","doi":"10.1007/s10489-024-06021-9","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a novel approach to enhance the accuracy of automatic classification systems for airborne pollen particles by integrating domain adaptation techniques. Our method incorporates expert-verified measurements into the convolutional neural network (CNN) training process to address the discrepancy between laboratory test data and real-world environmental measurements. We systematically fine-tuned CNN models, initially developed on standard reference datasets, with these expert-verified measurements. A comprehensive exploration of hyperparameters was conducted to optimize the CNN models, ensuring their robustness and adaptability across various environmental conditions and pollen types. Empirical results indicate a significant improvement, evidenced by a 22.52% increase in correlation and a 38.05% reduction in standard deviation across 29 cases of different pollen classes over multiple study years. This research highlights the potential of domain adaptation techniques in environmental monitoring, particularly in contexts where the integrity and representativeness of reference datasets are difficult to verify.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 6","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10489-024-06021-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Domain adaptation for improving automatic airborne pollen classification with expert-verified measurements\",\"authors\":\"Predrag Matavulj, Slobodan Jelic, Domagoj Severdija, Sanja Brdar, Milos Radovanovic, Danijela Tesendic, Branko Sikoparija\",\"doi\":\"10.1007/s10489-024-06021-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents a novel approach to enhance the accuracy of automatic classification systems for airborne pollen particles by integrating domain adaptation techniques. Our method incorporates expert-verified measurements into the convolutional neural network (CNN) training process to address the discrepancy between laboratory test data and real-world environmental measurements. We systematically fine-tuned CNN models, initially developed on standard reference datasets, with these expert-verified measurements. A comprehensive exploration of hyperparameters was conducted to optimize the CNN models, ensuring their robustness and adaptability across various environmental conditions and pollen types. Empirical results indicate a significant improvement, evidenced by a 22.52% increase in correlation and a 38.05% reduction in standard deviation across 29 cases of different pollen classes over multiple study years. This research highlights the potential of domain adaptation techniques in environmental monitoring, particularly in contexts where the integrity and representativeness of reference datasets are difficult to verify.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 6\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10489-024-06021-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-024-06021-9\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06021-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Domain adaptation for improving automatic airborne pollen classification with expert-verified measurements
This study presents a novel approach to enhance the accuracy of automatic classification systems for airborne pollen particles by integrating domain adaptation techniques. Our method incorporates expert-verified measurements into the convolutional neural network (CNN) training process to address the discrepancy between laboratory test data and real-world environmental measurements. We systematically fine-tuned CNN models, initially developed on standard reference datasets, with these expert-verified measurements. A comprehensive exploration of hyperparameters was conducted to optimize the CNN models, ensuring their robustness and adaptability across various environmental conditions and pollen types. Empirical results indicate a significant improvement, evidenced by a 22.52% increase in correlation and a 38.05% reduction in standard deviation across 29 cases of different pollen classes over multiple study years. This research highlights the potential of domain adaptation techniques in environmental monitoring, particularly in contexts where the integrity and representativeness of reference datasets are difficult to verify.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.