微生物生物技术中用于检测重组his标记蛋白的酶配体传感器的研制

IF 3.4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Mohammad Javad Jadidi , Rahman Emamzadeh , Mahboobeh Nazari , Sayed Rasoul Zaker
{"title":"微生物生物技术中用于检测重组his标记蛋白的酶配体传感器的研制","authors":"Mohammad Javad Jadidi ,&nbsp;Rahman Emamzadeh ,&nbsp;Mahboobeh Nazari ,&nbsp;Sayed Rasoul Zaker","doi":"10.1016/j.enzmictec.2025.110603","DOIUrl":null,"url":null,"abstract":"<div><div>The utilization of polyhistidine tags (His-tag) for the purification and analysis of recombinant proteins is a widely adopted technique in biotechnology. Considering the high costs associated with antibody-based methods, the development of cost-effective techniques for protein identification following purification could significantly lower research expenses. This study developed a novel His-tag aptasensor, combining an anti-His tag aptamer with a G-quadruplex-based DNAzyme, which demonstrates limits of detection (LODs) of 0.29 μM and 0.73 μM for a His-tagged protein in calorimetric and point-of-care assays, respectively. These LODs are significantly lower than typical protein concentrations obtained through Ni-NTA affinity chromatography, indicating that the His-tag aptasensor provides an efficient solution for <em>in vitro</em> analysis and post-purification monitoring of His-tagged proteins.</div></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"185 ","pages":"Article 110603"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of an enzymatic aptasensor for monitoring recombinant His-tagged proteins in microbial biotechnology\",\"authors\":\"Mohammad Javad Jadidi ,&nbsp;Rahman Emamzadeh ,&nbsp;Mahboobeh Nazari ,&nbsp;Sayed Rasoul Zaker\",\"doi\":\"10.1016/j.enzmictec.2025.110603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The utilization of polyhistidine tags (His-tag) for the purification and analysis of recombinant proteins is a widely adopted technique in biotechnology. Considering the high costs associated with antibody-based methods, the development of cost-effective techniques for protein identification following purification could significantly lower research expenses. This study developed a novel His-tag aptasensor, combining an anti-His tag aptamer with a G-quadruplex-based DNAzyme, which demonstrates limits of detection (LODs) of 0.29 μM and 0.73 μM for a His-tagged protein in calorimetric and point-of-care assays, respectively. These LODs are significantly lower than typical protein concentrations obtained through Ni-NTA affinity chromatography, indicating that the His-tag aptasensor provides an efficient solution for <em>in vitro</em> analysis and post-purification monitoring of His-tagged proteins.</div></div>\",\"PeriodicalId\":11770,\"journal\":{\"name\":\"Enzyme and Microbial Technology\",\"volume\":\"185 \",\"pages\":\"Article 110603\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enzyme and Microbial Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141022925000237\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022925000237","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

利用多组氨酸标签(His-tag)对重组蛋白进行纯化和分析是生物技术中广泛采用的一种技术。考虑到基于抗体的方法的高成本,开发具有成本效益的纯化后蛋白质鉴定技术可以显著降低研究费用。本研究开发了一种新型his标签适体传感器,将抗his标签适体与基于g -四聚体的DNAzyme结合,在量热和护理点检测中,his标签蛋白的检测限(lod)分别为0.29 μM和0.73 μM。这些lod明显低于通过Ni-NTA亲和层析获得的典型蛋白浓度,表明His-tag适体传感器为His-tag蛋白的体外分析和纯化后监测提供了有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of an enzymatic aptasensor for monitoring recombinant His-tagged proteins in microbial biotechnology
The utilization of polyhistidine tags (His-tag) for the purification and analysis of recombinant proteins is a widely adopted technique in biotechnology. Considering the high costs associated with antibody-based methods, the development of cost-effective techniques for protein identification following purification could significantly lower research expenses. This study developed a novel His-tag aptasensor, combining an anti-His tag aptamer with a G-quadruplex-based DNAzyme, which demonstrates limits of detection (LODs) of 0.29 μM and 0.73 μM for a His-tagged protein in calorimetric and point-of-care assays, respectively. These LODs are significantly lower than typical protein concentrations obtained through Ni-NTA affinity chromatography, indicating that the His-tag aptasensor provides an efficient solution for in vitro analysis and post-purification monitoring of His-tagged proteins.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Enzyme and Microbial Technology
Enzyme and Microbial Technology 生物-生物工程与应用微生物
CiteScore
7.60
自引率
5.90%
发文量
142
审稿时长
38 days
期刊介绍: Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells. We especially encourage submissions on: Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology New Biotechnological Approaches in Genomics, Proteomics and Metabolomics Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信