模拟更新世冰川旋回期间美国大西洋边缘的天然气、水合物和斜坡稳定性

IF 2.6 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Olin R. Carty , Warren T. Wood , Benjamin J. Phrampus , Taylor R. Lee , Jennifer M. Frederick , Michael Nole , David Fukuyama , Hugh Daigle
{"title":"模拟更新世冰川旋回期间美国大西洋边缘的天然气、水合物和斜坡稳定性","authors":"Olin R. Carty ,&nbsp;Warren T. Wood ,&nbsp;Benjamin J. Phrampus ,&nbsp;Taylor R. Lee ,&nbsp;Jennifer M. Frederick ,&nbsp;Michael Nole ,&nbsp;David Fukuyama ,&nbsp;Hugh Daigle","doi":"10.1016/j.margeo.2025.107492","DOIUrl":null,"url":null,"abstract":"<div><div>Changes in temperature and sea level can cause dissociation of methane hydrates in shallow marine sediments, leading to seafloor destabilization. Along the U.S. Atlantic margin, there exists a well-documented history of slope failure and numerous recorded occurrences of gas seeps. Several studies have linked slope failure in the region to gas seepage and hydrate dissociation driven by glacial-interglacial transitions, but this linkage has not been quantitatively demonstrated. Along the shelf edge, in an area where shallow methane gas seeps have been identified, we modeled methane gas and hydrate formation using ensembles of one-dimensional fluid flow simulations. Methane gas formation was modeled over the last 120,000 years to simulate a glacial-interglacial cycle. We ran this model at 16,044 individual locations in the region between <span><math><msup><mn>29</mn><mo>∘</mo></msup></math></span> N – <span><math><msup><mn>45</mn><mo>∘</mo></msup></math></span> N and <span><math><msup><mn>82</mn><mo>∘</mo></msup></math></span> W – <span><math><msup><mn>66</mn><mo>∘</mo></msup></math></span> W at a resolution of 1 × 1 arcminutes, focusing specifically on water depths between 200 and 1000 m that bracket the seafloor outcrop of the base of the hydrate stability zone. Using historic temperature and pressure records from the last 120,000 years, sediment properties in the area, and factor of safety calculations, we found that hydrate dissociation alone is unlikely to cause slope failure in the region, implying that an additional driving force would be necessary for failure to occur.</div></div>","PeriodicalId":18229,"journal":{"name":"Marine Geology","volume":"481 ","pages":"Article 107492"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling gas, hydrates, and slope stability on the U.S. Atlantic margin during Pleistocene glacial cycles\",\"authors\":\"Olin R. Carty ,&nbsp;Warren T. Wood ,&nbsp;Benjamin J. Phrampus ,&nbsp;Taylor R. Lee ,&nbsp;Jennifer M. Frederick ,&nbsp;Michael Nole ,&nbsp;David Fukuyama ,&nbsp;Hugh Daigle\",\"doi\":\"10.1016/j.margeo.2025.107492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Changes in temperature and sea level can cause dissociation of methane hydrates in shallow marine sediments, leading to seafloor destabilization. Along the U.S. Atlantic margin, there exists a well-documented history of slope failure and numerous recorded occurrences of gas seeps. Several studies have linked slope failure in the region to gas seepage and hydrate dissociation driven by glacial-interglacial transitions, but this linkage has not been quantitatively demonstrated. Along the shelf edge, in an area where shallow methane gas seeps have been identified, we modeled methane gas and hydrate formation using ensembles of one-dimensional fluid flow simulations. Methane gas formation was modeled over the last 120,000 years to simulate a glacial-interglacial cycle. We ran this model at 16,044 individual locations in the region between <span><math><msup><mn>29</mn><mo>∘</mo></msup></math></span> N – <span><math><msup><mn>45</mn><mo>∘</mo></msup></math></span> N and <span><math><msup><mn>82</mn><mo>∘</mo></msup></math></span> W – <span><math><msup><mn>66</mn><mo>∘</mo></msup></math></span> W at a resolution of 1 × 1 arcminutes, focusing specifically on water depths between 200 and 1000 m that bracket the seafloor outcrop of the base of the hydrate stability zone. Using historic temperature and pressure records from the last 120,000 years, sediment properties in the area, and factor of safety calculations, we found that hydrate dissociation alone is unlikely to cause slope failure in the region, implying that an additional driving force would be necessary for failure to occur.</div></div>\",\"PeriodicalId\":18229,\"journal\":{\"name\":\"Marine Geology\",\"volume\":\"481 \",\"pages\":\"Article 107492\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025322725000179\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025322725000179","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

温度和海平面的变化会导致浅海沉积物中甲烷水合物的分离,从而导致海底的不稳定。沿着美国大西洋边缘,存在着一个有充分记录的斜坡破坏历史和大量记录的天然气泄漏事件。一些研究已经将该地区的边坡破坏与冰川-间冰期过渡驱动的气体渗漏和水合物分离联系起来,但这种联系尚未得到定量证明。在陆架边缘已发现浅层甲烷气体渗漏的区域,我们利用一维流体流动模拟系统模拟了甲烷气体和水合物的形成。过去12万年的甲烷气体形成模型模拟了冰期-间冰期的循环。我们在29°N - 45°N和82°W - 66°W范围内的16,044个独立地点运行了这个模型,分辨率为1 × 1角分,特别关注水合物稳定带底部露出地面的200至1000米之间的水深。利用过去12万年的历史温度和压力记录、该地区的沉积物特性和安全系数计算,我们发现,仅水合物解离不太可能导致该地区的边坡破坏,这意味着破坏发生需要额外的驱动力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling gas, hydrates, and slope stability on the U.S. Atlantic margin during Pleistocene glacial cycles
Changes in temperature and sea level can cause dissociation of methane hydrates in shallow marine sediments, leading to seafloor destabilization. Along the U.S. Atlantic margin, there exists a well-documented history of slope failure and numerous recorded occurrences of gas seeps. Several studies have linked slope failure in the region to gas seepage and hydrate dissociation driven by glacial-interglacial transitions, but this linkage has not been quantitatively demonstrated. Along the shelf edge, in an area where shallow methane gas seeps have been identified, we modeled methane gas and hydrate formation using ensembles of one-dimensional fluid flow simulations. Methane gas formation was modeled over the last 120,000 years to simulate a glacial-interglacial cycle. We ran this model at 16,044 individual locations in the region between 29 N – 45 N and 82 W – 66 W at a resolution of 1 × 1 arcminutes, focusing specifically on water depths between 200 and 1000 m that bracket the seafloor outcrop of the base of the hydrate stability zone. Using historic temperature and pressure records from the last 120,000 years, sediment properties in the area, and factor of safety calculations, we found that hydrate dissociation alone is unlikely to cause slope failure in the region, implying that an additional driving force would be necessary for failure to occur.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine Geology
Marine Geology 地学-地球科学综合
CiteScore
6.10
自引率
6.90%
发文量
175
审稿时长
21.9 weeks
期刊介绍: Marine Geology is the premier international journal on marine geological processes in the broadest sense. We seek papers that are comprehensive, interdisciplinary and synthetic that will be lasting contributions to the field. Although most papers are based on regional studies, they must demonstrate new findings of international significance. We accept papers on subjects as diverse as seafloor hydrothermal systems, beach dynamics, early diagenesis, microbiological studies in sediments, palaeoclimate studies and geophysical studies of the seabed. We encourage papers that address emerging new fields, for example the influence of anthropogenic processes on coastal/marine geology and coastal/marine geoarchaeology. We insist that the papers are concerned with the marine realm and that they deal with geology: with rocks, sediments, and physical and chemical processes affecting them. Papers should address scientific hypotheses: highly descriptive data compilations or papers that deal only with marine management and risk assessment should be submitted to other journals. Papers on laboratory or modelling studies must demonstrate direct relevance to marine processes or deposits. The primary criteria for acceptance of papers is that the science is of high quality, novel, significant, and of broad international interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信