Golbarg Gazerani, Lesley R. Piercey, Syeda Reema and Katie A. Wilson*,
{"title":"革兰氏阴性ESKAPE病原菌内膜生物物理特性的研究","authors":"Golbarg Gazerani, Lesley R. Piercey, Syeda Reema and Katie A. Wilson*, ","doi":"10.1021/acs.jcim.4c0145710.1021/acs.jcim.4c01457","DOIUrl":null,"url":null,"abstract":"<p >The World Health Organization has identified multidrug-resistant bacteria as a serious global health threat. Gram-negative bacteria are particularly prone to antibiotic resistance, and their high rate of antibiotic resistance has been suggested to be related to the complex structure of their cell membrane. The outer membrane of Gram-negative bacteria contains lipopolysaccharides that protect the bacteria against threats such as antibiotics, while the inner membrane houses 20–30% of the bacterial cellular proteins. Given the cell membrane’s critical role in bacterial survival, antibiotics targeting the cell membrane have been proposed to combat bacterial infections. However, a deeper understanding of the biophysical properties of the bacterial cell membrane is crucial to developing effective and specific antibiotics. In this study, Martini coarse-grain molecular dynamics simulations were used to investigate the interplay between membrane composition and biophysical properties of the inner membrane across four pathogenic bacterial species: <i>Klebsiella pneumoniae</i>, <i>Pseudomonas aeruginosa</i>, <i>Enterobacter cloacae</i>, and <i>Escherichia coli</i>. The simulations indicate the impact of species-specific membrane composition on the overall membrane properties. Specifically, the cardiolipin concentration in the inner membrane is a key factor influencing the membrane features. Model membranes with varying concentrations of bacterial lipids (phosphatidylglycerol, phosphatidylethanolamine, and cardiolipin) further support the significant role of cardiolipin in determining the membrane biophysical properties. The bacterial inner membrane models developed in this work pave the way for future simulations of bacterial membrane proteins and for simulations investigating novel strategies aimed at disrupting the bacterial membrane to treat antibiotic-resistant infections.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"65 3","pages":"1453–1464 1453–1464"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examining the Biophysical Properties of the Inner Membrane of Gram-Negative ESKAPE Pathogens\",\"authors\":\"Golbarg Gazerani, Lesley R. Piercey, Syeda Reema and Katie A. Wilson*, \",\"doi\":\"10.1021/acs.jcim.4c0145710.1021/acs.jcim.4c01457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The World Health Organization has identified multidrug-resistant bacteria as a serious global health threat. Gram-negative bacteria are particularly prone to antibiotic resistance, and their high rate of antibiotic resistance has been suggested to be related to the complex structure of their cell membrane. The outer membrane of Gram-negative bacteria contains lipopolysaccharides that protect the bacteria against threats such as antibiotics, while the inner membrane houses 20–30% of the bacterial cellular proteins. Given the cell membrane’s critical role in bacterial survival, antibiotics targeting the cell membrane have been proposed to combat bacterial infections. However, a deeper understanding of the biophysical properties of the bacterial cell membrane is crucial to developing effective and specific antibiotics. In this study, Martini coarse-grain molecular dynamics simulations were used to investigate the interplay between membrane composition and biophysical properties of the inner membrane across four pathogenic bacterial species: <i>Klebsiella pneumoniae</i>, <i>Pseudomonas aeruginosa</i>, <i>Enterobacter cloacae</i>, and <i>Escherichia coli</i>. The simulations indicate the impact of species-specific membrane composition on the overall membrane properties. Specifically, the cardiolipin concentration in the inner membrane is a key factor influencing the membrane features. Model membranes with varying concentrations of bacterial lipids (phosphatidylglycerol, phosphatidylethanolamine, and cardiolipin) further support the significant role of cardiolipin in determining the membrane biophysical properties. The bacterial inner membrane models developed in this work pave the way for future simulations of bacterial membrane proteins and for simulations investigating novel strategies aimed at disrupting the bacterial membrane to treat antibiotic-resistant infections.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"65 3\",\"pages\":\"1453–1464 1453–1464\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jcim.4c01457\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c01457","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Examining the Biophysical Properties of the Inner Membrane of Gram-Negative ESKAPE Pathogens
The World Health Organization has identified multidrug-resistant bacteria as a serious global health threat. Gram-negative bacteria are particularly prone to antibiotic resistance, and their high rate of antibiotic resistance has been suggested to be related to the complex structure of their cell membrane. The outer membrane of Gram-negative bacteria contains lipopolysaccharides that protect the bacteria against threats such as antibiotics, while the inner membrane houses 20–30% of the bacterial cellular proteins. Given the cell membrane’s critical role in bacterial survival, antibiotics targeting the cell membrane have been proposed to combat bacterial infections. However, a deeper understanding of the biophysical properties of the bacterial cell membrane is crucial to developing effective and specific antibiotics. In this study, Martini coarse-grain molecular dynamics simulations were used to investigate the interplay between membrane composition and biophysical properties of the inner membrane across four pathogenic bacterial species: Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterobacter cloacae, and Escherichia coli. The simulations indicate the impact of species-specific membrane composition on the overall membrane properties. Specifically, the cardiolipin concentration in the inner membrane is a key factor influencing the membrane features. Model membranes with varying concentrations of bacterial lipids (phosphatidylglycerol, phosphatidylethanolamine, and cardiolipin) further support the significant role of cardiolipin in determining the membrane biophysical properties. The bacterial inner membrane models developed in this work pave the way for future simulations of bacterial membrane proteins and for simulations investigating novel strategies aimed at disrupting the bacterial membrane to treat antibiotic-resistant infections.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.