Bo Wang 王博, Peng Jia 贾鹏, Shenghan Gao 高胜寒, Huanhuan Zhao 赵焕焕, Gaoyang Zheng 郑高洋, Linfeng Xu 许林峰, Kai Ye 叶凯
{"title":"长而准确:高保真测序如何改变基因组学。","authors":"Bo Wang 王博, Peng Jia 贾鹏, Shenghan Gao 高胜寒, Huanhuan Zhao 赵焕焕, Gaoyang Zheng 郑高洋, Linfeng Xu 许林峰, Kai Ye 叶凯","doi":"10.1093/gpbjnl/qzaf003","DOIUrl":null,"url":null,"abstract":"<p><p>Recent developments in PacBio high-fidelity (HiFi) sequencing technologies have transformed genomic research, with circular consensus sequencing now achieving 99.9% accuracy for long (up to 25 kb) single-molecule reads. This method circumvents biases intrinsic to amplification-based approaches, enabling thorough analysis of complex genomic regions [including tandem repeats, segmental duplications, ribosomal DNA (rDNA) arrays, and centromeres] as well as direct detection of base modifications, furnishing both sequence and epigenetic data concurrently. This has streamlined a number of tasks including genome assembly, variant detection, and full-length transcript analysis. This review provides a comprehensive overview of the applications and challenges of HiFi sequencing across various fields, including genomics, transcriptomics, and epigenetics. By delineating the evolving landscape of HiFi sequencing in multi-omics research, we highlight its potential to deepen our understanding of genetic mechanisms and to advance precision medicine.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":" ","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12257948/pdf/","citationCount":"0","resultStr":"{\"title\":\"Long and Accurate: How HiFi Sequencing is Transforming Genomics.\",\"authors\":\"Bo Wang 王博, Peng Jia 贾鹏, Shenghan Gao 高胜寒, Huanhuan Zhao 赵焕焕, Gaoyang Zheng 郑高洋, Linfeng Xu 许林峰, Kai Ye 叶凯\",\"doi\":\"10.1093/gpbjnl/qzaf003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent developments in PacBio high-fidelity (HiFi) sequencing technologies have transformed genomic research, with circular consensus sequencing now achieving 99.9% accuracy for long (up to 25 kb) single-molecule reads. This method circumvents biases intrinsic to amplification-based approaches, enabling thorough analysis of complex genomic regions [including tandem repeats, segmental duplications, ribosomal DNA (rDNA) arrays, and centromeres] as well as direct detection of base modifications, furnishing both sequence and epigenetic data concurrently. This has streamlined a number of tasks including genome assembly, variant detection, and full-length transcript analysis. This review provides a comprehensive overview of the applications and challenges of HiFi sequencing across various fields, including genomics, transcriptomics, and epigenetics. By delineating the evolving landscape of HiFi sequencing in multi-omics research, we highlight its potential to deepen our understanding of genetic mechanisms and to advance precision medicine.</p>\",\"PeriodicalId\":94020,\"journal\":{\"name\":\"Genomics, proteomics & bioinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12257948/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics, proteomics & bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/gpbjnl/qzaf003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, proteomics & bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gpbjnl/qzaf003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Long and Accurate: How HiFi Sequencing is Transforming Genomics.
Recent developments in PacBio high-fidelity (HiFi) sequencing technologies have transformed genomic research, with circular consensus sequencing now achieving 99.9% accuracy for long (up to 25 kb) single-molecule reads. This method circumvents biases intrinsic to amplification-based approaches, enabling thorough analysis of complex genomic regions [including tandem repeats, segmental duplications, ribosomal DNA (rDNA) arrays, and centromeres] as well as direct detection of base modifications, furnishing both sequence and epigenetic data concurrently. This has streamlined a number of tasks including genome assembly, variant detection, and full-length transcript analysis. This review provides a comprehensive overview of the applications and challenges of HiFi sequencing across various fields, including genomics, transcriptomics, and epigenetics. By delineating the evolving landscape of HiFi sequencing in multi-omics research, we highlight its potential to deepen our understanding of genetic mechanisms and to advance precision medicine.