Fernanda Veloso Pereira, Davi Ferreira, Heraldo Garmes, Denise Engelbrecht Zantut-Wittmann, Fabio Rogério, Mateus Dal Fabbro, Cleiton Formentin, Carlos Henrique Quartucci Forster, Fabiano Reis
{"title":"机器学习预测垂体大腺瘤一致性:利用人口统计学数据和脑MRI参数。","authors":"Fernanda Veloso Pereira, Davi Ferreira, Heraldo Garmes, Denise Engelbrecht Zantut-Wittmann, Fabio Rogério, Mateus Dal Fabbro, Cleiton Formentin, Carlos Henrique Quartucci Forster, Fabiano Reis","doi":"10.1007/s10278-025-01417-6","DOIUrl":null,"url":null,"abstract":"<p><p>Consistency of pituitary macroadenomas is a key determinant in surgical outcomes, with non-soft consistency linked to more complications and incomplete resections. This study aimed to develop a machine learning model to predict the consistency of pituitary macroadenomas to improve surgical planning and outcomes. A retrospective study of patients with pituitary macroadenomas was conducted. Data included brain magnetic resonance imaging findings (diameter and apparent diffusion coefficient), patient demographics (age and sex), and tumor consistency. Seventy patients were evaluated, 59 with soft consistency and 11 with non-soft consistency. The support vector machine (SVM) was the best model with ROC AUC score of 83.3% [95% CI 65.8, 97.6], AP AUC of 69.8% [95% CI 41.3, 91.1], sensitivity of 73.1% [95% CI 44.4, 100], specificity of 89.8% [95% CI 82, 96.7], F1 score of 0.63 [95% CI 0.36, 0.83], and Matthews correlation coefficient score of 0.57 [95% CI 0.29, 0.79]. These findings indicate a significant improvement over random classification, as confirmed by a permutation test (p < 0.05). Additionally, the model had a 67.4% probability of outperforming the second-best model in cross-validation, as determined through Bayesian analysis, and demonstrated statistical significance (p < 0.05) compared to non-ensemble models. Using explainability heuristics, both 2D and 3D probability maps highlighted areas with a higher probability of non-soft consistency. The attributes most influential in the correct classification by our best model were male sex and age ≤ 42.25 years. Despite some limitations, the SVM model showed promise in predicting tumor consistency, which could aid in surgical planning. To address concerns about generalizability, we have created an open-access repository to promote future external validation studies and collaboration with other research centers, with the goal of enhancing model prediction through transfer learning.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Prediction of Pituitary Macroadenoma Consistency: Utilizing Demographic Data and Brain MRI Parameters.\",\"authors\":\"Fernanda Veloso Pereira, Davi Ferreira, Heraldo Garmes, Denise Engelbrecht Zantut-Wittmann, Fabio Rogério, Mateus Dal Fabbro, Cleiton Formentin, Carlos Henrique Quartucci Forster, Fabiano Reis\",\"doi\":\"10.1007/s10278-025-01417-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Consistency of pituitary macroadenomas is a key determinant in surgical outcomes, with non-soft consistency linked to more complications and incomplete resections. This study aimed to develop a machine learning model to predict the consistency of pituitary macroadenomas to improve surgical planning and outcomes. A retrospective study of patients with pituitary macroadenomas was conducted. Data included brain magnetic resonance imaging findings (diameter and apparent diffusion coefficient), patient demographics (age and sex), and tumor consistency. Seventy patients were evaluated, 59 with soft consistency and 11 with non-soft consistency. The support vector machine (SVM) was the best model with ROC AUC score of 83.3% [95% CI 65.8, 97.6], AP AUC of 69.8% [95% CI 41.3, 91.1], sensitivity of 73.1% [95% CI 44.4, 100], specificity of 89.8% [95% CI 82, 96.7], F1 score of 0.63 [95% CI 0.36, 0.83], and Matthews correlation coefficient score of 0.57 [95% CI 0.29, 0.79]. These findings indicate a significant improvement over random classification, as confirmed by a permutation test (p < 0.05). Additionally, the model had a 67.4% probability of outperforming the second-best model in cross-validation, as determined through Bayesian analysis, and demonstrated statistical significance (p < 0.05) compared to non-ensemble models. Using explainability heuristics, both 2D and 3D probability maps highlighted areas with a higher probability of non-soft consistency. The attributes most influential in the correct classification by our best model were male sex and age ≤ 42.25 years. Despite some limitations, the SVM model showed promise in predicting tumor consistency, which could aid in surgical planning. To address concerns about generalizability, we have created an open-access repository to promote future external validation studies and collaboration with other research centers, with the goal of enhancing model prediction through transfer learning.</p>\",\"PeriodicalId\":516858,\"journal\":{\"name\":\"Journal of imaging informatics in medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of imaging informatics in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-025-01417-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01417-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
垂体大腺瘤的一致性是手术结果的关键决定因素,非软一致性与更多并发症和不完全切除有关。本研究旨在建立一个机器学习模型来预测垂体大腺瘤的一致性,以改善手术计划和结果。对垂体大腺瘤患者进行回顾性研究。数据包括脑磁共振成像结果(直径和表观扩散系数)、患者人口统计学(年龄和性别)和肿瘤一致性。对70例患者进行评估,其中软一致性59例,非软一致性11例。支持向量机(SVM)是最佳模型,ROC AUC评分为83.3% [95% CI 65.8, 97.6], AP AUC为69.8% [95% CI 41.3, 91.1],敏感性为73.1% [95% CI 44.4, 100],特异性为89.8% [95% CI 82, 96.7], F1评分为0.63 [95% CI 0.36, 0.83], Matthews相关系数评分为0.57 [95% CI 0.29, 0.79]。这些发现表明,与随机分类相比,有了显著的改进,这一点得到了排列检验的证实
Machine Learning Prediction of Pituitary Macroadenoma Consistency: Utilizing Demographic Data and Brain MRI Parameters.
Consistency of pituitary macroadenomas is a key determinant in surgical outcomes, with non-soft consistency linked to more complications and incomplete resections. This study aimed to develop a machine learning model to predict the consistency of pituitary macroadenomas to improve surgical planning and outcomes. A retrospective study of patients with pituitary macroadenomas was conducted. Data included brain magnetic resonance imaging findings (diameter and apparent diffusion coefficient), patient demographics (age and sex), and tumor consistency. Seventy patients were evaluated, 59 with soft consistency and 11 with non-soft consistency. The support vector machine (SVM) was the best model with ROC AUC score of 83.3% [95% CI 65.8, 97.6], AP AUC of 69.8% [95% CI 41.3, 91.1], sensitivity of 73.1% [95% CI 44.4, 100], specificity of 89.8% [95% CI 82, 96.7], F1 score of 0.63 [95% CI 0.36, 0.83], and Matthews correlation coefficient score of 0.57 [95% CI 0.29, 0.79]. These findings indicate a significant improvement over random classification, as confirmed by a permutation test (p < 0.05). Additionally, the model had a 67.4% probability of outperforming the second-best model in cross-validation, as determined through Bayesian analysis, and demonstrated statistical significance (p < 0.05) compared to non-ensemble models. Using explainability heuristics, both 2D and 3D probability maps highlighted areas with a higher probability of non-soft consistency. The attributes most influential in the correct classification by our best model were male sex and age ≤ 42.25 years. Despite some limitations, the SVM model showed promise in predicting tumor consistency, which could aid in surgical planning. To address concerns about generalizability, we have created an open-access repository to promote future external validation studies and collaboration with other research centers, with the goal of enhancing model prediction through transfer learning.