序函子是一个弱右多伴随子

IF 0.6 4区 数学 Q3 MATHEMATICS
J. Climent Vidal, E. Cosme Llópez
{"title":"序函子是一个弱右多伴随子","authors":"J. Climent Vidal,&nbsp;E. Cosme Llópez","doi":"10.1007/s10485-025-09800-8","DOIUrl":null,"url":null,"abstract":"<div><p>For a plural signature <span>\\(\\Sigma \\)</span> and with regard to the category <span>\\(\\textsf {NPIAlg}(\\Sigma )_{\\textsf {s}}\\)</span>, of naturally preordered idempotent <span>\\(\\Sigma \\)</span>-algebras and surjective homomorphisms, we define a contravariant functor <span>\\(\\textrm{Lsys}_{\\Sigma }\\)</span> from <span>\\(\\textsf {NPIAlg}(\\Sigma )_{\\textsf {s}}\\)</span> to <span>\\(\\textsf {Cat}\\)</span>, the category of categories, that assigns to <span>\\({\\textbf {I}}\\)</span> in <span>\\(\\textsf {NPIAlg}(\\Sigma )_{\\textsf {s}}\\)</span> the category <span>\\({\\textbf {I}}\\)</span>-<span>\\(\\textsf {LAlg}(\\Sigma )\\)</span>, of <span>\\({\\textbf {I}}\\)</span>-semi-inductive Lallement systems of <span>\\(\\Sigma \\)</span>-algebras, and a covariant functor <span>\\((\\textsf {Alg}(\\Sigma )\\,{\\downarrow _{\\textsf {s}}}\\, \\cdot )\\)</span> from <span>\\(\\textsf {NPIAlg}(\\Sigma )_{\\textsf {s}}\\)</span> to <span>\\(\\textsf {Cat}\\)</span>, that assigns to <span>\\({\\textbf {I}}\\)</span> in <span>\\(\\textsf {NPIAlg}(\\Sigma )_{\\textsf {s}}\\)</span> the category <span>\\((\\textsf {Alg}(\\Sigma )\\,{\\downarrow _{\\textsf {s}}}\\, {\\textbf {I}})\\)</span>, of the coverings of <span>\\({\\textbf {I}}\\)</span>, i.e., the ordered pairs <span>\\(({\\textbf {A}},f)\\)</span> in which <span>\\({\\textbf {A}}\\)</span> is a <span>\\(\\Sigma \\)</span>-algebra and <img> a surjective homomorphism. Then, by means of the Grothendieck construction, we obtain the categories <span>\\(\\int ^{\\textsf {NPIAlg}(\\Sigma )_{\\textsf {s}}}\\textrm{Lsys}_{\\Sigma }\\)</span> and <span>\\(\\int _{\\textsf {NPIAlg}(\\Sigma )_{\\textsf {s}}}(\\textsf {Alg}(\\Sigma )\\,{\\downarrow _{\\textsf {s}}}\\, \\cdot )\\)</span>; define a functor <span>\\(\\mathfrak {L}_{\\Sigma }\\)</span> from the first category to the second, which we will refer to as the Lallement functor; and prove that it is a weak right multiadjoint. Finally, we state the relationship between the Płonka functor and the Lallement functor.\n</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"33 2","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-025-09800-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Lallement Functor is a Weak Right Multiadjoint\",\"authors\":\"J. Climent Vidal,&nbsp;E. Cosme Llópez\",\"doi\":\"10.1007/s10485-025-09800-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For a plural signature <span>\\\\(\\\\Sigma \\\\)</span> and with regard to the category <span>\\\\(\\\\textsf {NPIAlg}(\\\\Sigma )_{\\\\textsf {s}}\\\\)</span>, of naturally preordered idempotent <span>\\\\(\\\\Sigma \\\\)</span>-algebras and surjective homomorphisms, we define a contravariant functor <span>\\\\(\\\\textrm{Lsys}_{\\\\Sigma }\\\\)</span> from <span>\\\\(\\\\textsf {NPIAlg}(\\\\Sigma )_{\\\\textsf {s}}\\\\)</span> to <span>\\\\(\\\\textsf {Cat}\\\\)</span>, the category of categories, that assigns to <span>\\\\({\\\\textbf {I}}\\\\)</span> in <span>\\\\(\\\\textsf {NPIAlg}(\\\\Sigma )_{\\\\textsf {s}}\\\\)</span> the category <span>\\\\({\\\\textbf {I}}\\\\)</span>-<span>\\\\(\\\\textsf {LAlg}(\\\\Sigma )\\\\)</span>, of <span>\\\\({\\\\textbf {I}}\\\\)</span>-semi-inductive Lallement systems of <span>\\\\(\\\\Sigma \\\\)</span>-algebras, and a covariant functor <span>\\\\((\\\\textsf {Alg}(\\\\Sigma )\\\\,{\\\\downarrow _{\\\\textsf {s}}}\\\\, \\\\cdot )\\\\)</span> from <span>\\\\(\\\\textsf {NPIAlg}(\\\\Sigma )_{\\\\textsf {s}}\\\\)</span> to <span>\\\\(\\\\textsf {Cat}\\\\)</span>, that assigns to <span>\\\\({\\\\textbf {I}}\\\\)</span> in <span>\\\\(\\\\textsf {NPIAlg}(\\\\Sigma )_{\\\\textsf {s}}\\\\)</span> the category <span>\\\\((\\\\textsf {Alg}(\\\\Sigma )\\\\,{\\\\downarrow _{\\\\textsf {s}}}\\\\, {\\\\textbf {I}})\\\\)</span>, of the coverings of <span>\\\\({\\\\textbf {I}}\\\\)</span>, i.e., the ordered pairs <span>\\\\(({\\\\textbf {A}},f)\\\\)</span> in which <span>\\\\({\\\\textbf {A}}\\\\)</span> is a <span>\\\\(\\\\Sigma \\\\)</span>-algebra and <img> a surjective homomorphism. Then, by means of the Grothendieck construction, we obtain the categories <span>\\\\(\\\\int ^{\\\\textsf {NPIAlg}(\\\\Sigma )_{\\\\textsf {s}}}\\\\textrm{Lsys}_{\\\\Sigma }\\\\)</span> and <span>\\\\(\\\\int _{\\\\textsf {NPIAlg}(\\\\Sigma )_{\\\\textsf {s}}}(\\\\textsf {Alg}(\\\\Sigma )\\\\,{\\\\downarrow _{\\\\textsf {s}}}\\\\, \\\\cdot )\\\\)</span>; define a functor <span>\\\\(\\\\mathfrak {L}_{\\\\Sigma }\\\\)</span> from the first category to the second, which we will refer to as the Lallement functor; and prove that it is a weak right multiadjoint. Finally, we state the relationship between the Płonka functor and the Lallement functor.\\n</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":\"33 2\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10485-025-09800-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-025-09800-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-025-09800-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于复数签名 \(\Sigma \) 关于类别 \(\textsf {NPIAlg}(\Sigma )_{\textsf {s}}\),自然预定幂等的 \(\Sigma \)在-代数和满射同态中,我们定义了一个逆变函子 \(\textrm{Lsys}_{\Sigma }\) 从 \(\textsf {NPIAlg}(\Sigma )_{\textsf {s}}\) 到 \(\textsf {Cat}\),类别的类别,它分配给 \({\textbf {I}}\) 在 \(\textsf {NPIAlg}(\Sigma )_{\textsf {s}}\) 类别 \({\textbf {I}}\)-\(\textsf {LAlg}(\Sigma )\),的 \({\textbf {I}}\)-的半感应对偶系统 \(\Sigma \)代数和一个协变函子 \((\textsf {Alg}(\Sigma )\,{\downarrow _{\textsf {s}}}\, \cdot )\) 从 \(\textsf {NPIAlg}(\Sigma )_{\textsf {s}}\) 到 \(\textsf {Cat}\),它分配给 \({\textbf {I}}\) 在 \(\textsf {NPIAlg}(\Sigma )_{\textsf {s}}\) 类别 \((\textsf {Alg}(\Sigma )\,{\downarrow _{\textsf {s}}}\, {\textbf {I}})\)的覆盖物 \({\textbf {I}}\),即有序对 \(({\textbf {A}},f)\) 其中 \({\textbf {A}}\) 是? \(\Sigma \)-代数和满射同态。然后,利用格罗滕迪克构造,我们得到了范畴 \(\int ^{\textsf {NPIAlg}(\Sigma )_{\textsf {s}}}\textrm{Lsys}_{\Sigma }\) 和 \(\int _{\textsf {NPIAlg}(\Sigma )_{\textsf {s}}}(\textsf {Alg}(\Sigma )\,{\downarrow _{\textsf {s}}}\, \cdot )\);定义函子 \(\mathfrak {L}_{\Sigma }\) 从第一类到第二类,我们称之为Lallement函子;并证明了它是一个弱右多重伴随。最后,说明Płonka函子和Lallement函子之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lallement Functor is a Weak Right Multiadjoint

For a plural signature \(\Sigma \) and with regard to the category \(\textsf {NPIAlg}(\Sigma )_{\textsf {s}}\), of naturally preordered idempotent \(\Sigma \)-algebras and surjective homomorphisms, we define a contravariant functor \(\textrm{Lsys}_{\Sigma }\) from \(\textsf {NPIAlg}(\Sigma )_{\textsf {s}}\) to \(\textsf {Cat}\), the category of categories, that assigns to \({\textbf {I}}\) in \(\textsf {NPIAlg}(\Sigma )_{\textsf {s}}\) the category \({\textbf {I}}\)-\(\textsf {LAlg}(\Sigma )\), of \({\textbf {I}}\)-semi-inductive Lallement systems of \(\Sigma \)-algebras, and a covariant functor \((\textsf {Alg}(\Sigma )\,{\downarrow _{\textsf {s}}}\, \cdot )\) from \(\textsf {NPIAlg}(\Sigma )_{\textsf {s}}\) to \(\textsf {Cat}\), that assigns to \({\textbf {I}}\) in \(\textsf {NPIAlg}(\Sigma )_{\textsf {s}}\) the category \((\textsf {Alg}(\Sigma )\,{\downarrow _{\textsf {s}}}\, {\textbf {I}})\), of the coverings of \({\textbf {I}}\), i.e., the ordered pairs \(({\textbf {A}},f)\) in which \({\textbf {A}}\) is a \(\Sigma \)-algebra and a surjective homomorphism. Then, by means of the Grothendieck construction, we obtain the categories \(\int ^{\textsf {NPIAlg}(\Sigma )_{\textsf {s}}}\textrm{Lsys}_{\Sigma }\) and \(\int _{\textsf {NPIAlg}(\Sigma )_{\textsf {s}}}(\textsf {Alg}(\Sigma )\,{\downarrow _{\textsf {s}}}\, \cdot )\); define a functor \(\mathfrak {L}_{\Sigma }\) from the first category to the second, which we will refer to as the Lallement functor; and prove that it is a weak right multiadjoint. Finally, we state the relationship between the Płonka functor and the Lallement functor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信