S. Jiang , R. Lin Peng , Z.F. He , L.Q. Cui , Z. Hegedüs , U. Lienert , N. Jia
{"title":"原位同步加速器x射线衍射揭示多层金属复合材料力学行为的各向异性:以累积滚接Ti/Nb层合板为例","authors":"S. Jiang , R. Lin Peng , Z.F. He , L.Q. Cui , Z. Hegedüs , U. Lienert , N. Jia","doi":"10.1016/j.actamat.2025.120815","DOIUrl":null,"url":null,"abstract":"<div><div>Multilayered metallic composites have attracted widespread attention in both scientific and engineering communities owing to their exceptional mechanical properties. Clarifying the anisotropic mechanical behavior and the underlying deformation mechanisms is the premise for the successful application of those materials. In this study, the anisotropic plasticity and damage of multilayered Ti/Nb composites processed by accumulative roll bonding were investigated using synchrotron-based X-ray diffraction during tensile deformation. When comparing the uniaxial tension along rolling direction (RD) and transverse direction (TD), the laminates do not show obvious plastic anisotropy, but have significant anisotropic neck-to-fracture behavior. Residual stress, along with texture, contributes to the absence of anisotropy in yield strength. Under different loading directions, similar dislocation densities in each constituent metal, resulting from the similar grain morphologies, are responsible for the consistent ultimate tensile strengths. The collective hardening effect of the constituent metals results in the insignificant difference of work hardening in the bulk laminates. After necking, the faster degradation of mechanical property, namely the higher decreasing rate of flow stress, of the bulk composites loaded along the TD is attributed to the larger stress triaxiality of the Nb {211} grains (i.e. 〈211〉 // loading direction) that accelerates micro-void growth in the Nb layers as well as the more universal decohesion of hetero-interfaces between the different metals. These findings provide a comprehensive and in-depth understanding of the anisotropic plasticity and fracture behaviors, as well as the micromechanisms of Ti/Nb composites, which gives new insights to excavate the forming potential for multilayered metallic composites.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"287 ","pages":"Article 120815"},"PeriodicalIF":9.3000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical behavior anisotropy of multilayered metallic composites revealed by in-situ synchrotron X-ray diffraction: Example of Ti/Nb laminates processed by accumulative roll bonding\",\"authors\":\"S. Jiang , R. Lin Peng , Z.F. He , L.Q. Cui , Z. Hegedüs , U. Lienert , N. Jia\",\"doi\":\"10.1016/j.actamat.2025.120815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multilayered metallic composites have attracted widespread attention in both scientific and engineering communities owing to their exceptional mechanical properties. Clarifying the anisotropic mechanical behavior and the underlying deformation mechanisms is the premise for the successful application of those materials. In this study, the anisotropic plasticity and damage of multilayered Ti/Nb composites processed by accumulative roll bonding were investigated using synchrotron-based X-ray diffraction during tensile deformation. When comparing the uniaxial tension along rolling direction (RD) and transverse direction (TD), the laminates do not show obvious plastic anisotropy, but have significant anisotropic neck-to-fracture behavior. Residual stress, along with texture, contributes to the absence of anisotropy in yield strength. Under different loading directions, similar dislocation densities in each constituent metal, resulting from the similar grain morphologies, are responsible for the consistent ultimate tensile strengths. The collective hardening effect of the constituent metals results in the insignificant difference of work hardening in the bulk laminates. After necking, the faster degradation of mechanical property, namely the higher decreasing rate of flow stress, of the bulk composites loaded along the TD is attributed to the larger stress triaxiality of the Nb {211} grains (i.e. 〈211〉 // loading direction) that accelerates micro-void growth in the Nb layers as well as the more universal decohesion of hetero-interfaces between the different metals. These findings provide a comprehensive and in-depth understanding of the anisotropic plasticity and fracture behaviors, as well as the micromechanisms of Ti/Nb composites, which gives new insights to excavate the forming potential for multilayered metallic composites.</div></div>\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"287 \",\"pages\":\"Article 120815\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359645425001077\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425001077","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Mechanical behavior anisotropy of multilayered metallic composites revealed by in-situ synchrotron X-ray diffraction: Example of Ti/Nb laminates processed by accumulative roll bonding
Multilayered metallic composites have attracted widespread attention in both scientific and engineering communities owing to their exceptional mechanical properties. Clarifying the anisotropic mechanical behavior and the underlying deformation mechanisms is the premise for the successful application of those materials. In this study, the anisotropic plasticity and damage of multilayered Ti/Nb composites processed by accumulative roll bonding were investigated using synchrotron-based X-ray diffraction during tensile deformation. When comparing the uniaxial tension along rolling direction (RD) and transverse direction (TD), the laminates do not show obvious plastic anisotropy, but have significant anisotropic neck-to-fracture behavior. Residual stress, along with texture, contributes to the absence of anisotropy in yield strength. Under different loading directions, similar dislocation densities in each constituent metal, resulting from the similar grain morphologies, are responsible for the consistent ultimate tensile strengths. The collective hardening effect of the constituent metals results in the insignificant difference of work hardening in the bulk laminates. After necking, the faster degradation of mechanical property, namely the higher decreasing rate of flow stress, of the bulk composites loaded along the TD is attributed to the larger stress triaxiality of the Nb {211} grains (i.e. 〈211〉 // loading direction) that accelerates micro-void growth in the Nb layers as well as the more universal decohesion of hetero-interfaces between the different metals. These findings provide a comprehensive and in-depth understanding of the anisotropic plasticity and fracture behaviors, as well as the micromechanisms of Ti/Nb composites, which gives new insights to excavate the forming potential for multilayered metallic composites.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.