{"title":"MS-NeRF:多空间神经辐射场","authors":"Ze-Xin Yin;Peng-Yi Jiao;Jiaxiong Qiu;Ming-Ming Cheng;Bo Ren","doi":"10.1109/TPAMI.2025.3540074","DOIUrl":null,"url":null,"abstract":"Existing Neural Radiance Fields (NeRF) methods suffer from the existence of reflective objects, often resulting in blurry or distorted rendering. Instead of calculating a single radiance field, we propose a multi-space neural radiance field (MS-NeRF) that represents the scene using a group of feature fields in parallel sub-spaces, which leads to a better understanding of the neural network toward the existence of reflective and refractive objects. Our multi-space scheme works as an enhancement to existing NeRF methods, with only small computational overheads needed for training and inferring the extra-space outputs. We design different multi-space modules for representative MLP-based and grid-based NeRF methods, which improve Mip-NeRF 360 by 4.15 dB in PSNR with 0.5% extra parameters and further improve TensoRF by 2.71 dB with 0.046% extra parameters on reflective regions without degrading the rendering quality on other regions. We further construct a novel dataset consisting of 33 synthetic scenes and 7 real captured scenes with complex reflection and refraction, where we design complex camera paths to fully benchmark the robustness of NeRF-based methods. Extensive experiments show that our approach significantly outperforms the existing single-space NeRF methods for rendering high-quality scenes concerned with complex light paths through mirror-like objects.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 5","pages":"3766-3783"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MS-NeRF: Multi-Space Neural Radiance Fields\",\"authors\":\"Ze-Xin Yin;Peng-Yi Jiao;Jiaxiong Qiu;Ming-Ming Cheng;Bo Ren\",\"doi\":\"10.1109/TPAMI.2025.3540074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing Neural Radiance Fields (NeRF) methods suffer from the existence of reflective objects, often resulting in blurry or distorted rendering. Instead of calculating a single radiance field, we propose a multi-space neural radiance field (MS-NeRF) that represents the scene using a group of feature fields in parallel sub-spaces, which leads to a better understanding of the neural network toward the existence of reflective and refractive objects. Our multi-space scheme works as an enhancement to existing NeRF methods, with only small computational overheads needed for training and inferring the extra-space outputs. We design different multi-space modules for representative MLP-based and grid-based NeRF methods, which improve Mip-NeRF 360 by 4.15 dB in PSNR with 0.5% extra parameters and further improve TensoRF by 2.71 dB with 0.046% extra parameters on reflective regions without degrading the rendering quality on other regions. We further construct a novel dataset consisting of 33 synthetic scenes and 7 real captured scenes with complex reflection and refraction, where we design complex camera paths to fully benchmark the robustness of NeRF-based methods. Extensive experiments show that our approach significantly outperforms the existing single-space NeRF methods for rendering high-quality scenes concerned with complex light paths through mirror-like objects.\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":\"47 5\",\"pages\":\"3766-3783\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10878467/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10878467/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Existing Neural Radiance Fields (NeRF) methods suffer from the existence of reflective objects, often resulting in blurry or distorted rendering. Instead of calculating a single radiance field, we propose a multi-space neural radiance field (MS-NeRF) that represents the scene using a group of feature fields in parallel sub-spaces, which leads to a better understanding of the neural network toward the existence of reflective and refractive objects. Our multi-space scheme works as an enhancement to existing NeRF methods, with only small computational overheads needed for training and inferring the extra-space outputs. We design different multi-space modules for representative MLP-based and grid-based NeRF methods, which improve Mip-NeRF 360 by 4.15 dB in PSNR with 0.5% extra parameters and further improve TensoRF by 2.71 dB with 0.046% extra parameters on reflective regions without degrading the rendering quality on other regions. We further construct a novel dataset consisting of 33 synthetic scenes and 7 real captured scenes with complex reflection and refraction, where we design complex camera paths to fully benchmark the robustness of NeRF-based methods. Extensive experiments show that our approach significantly outperforms the existing single-space NeRF methods for rendering high-quality scenes concerned with complex light paths through mirror-like objects.