{"title":"抗gd2单抗检测iPS细胞衍生的自然杀伤T细胞对神经母细胞瘤的抗体依赖性细胞毒性。","authors":"Katsuhiro Nishimura, Takahiro Aoki, Midori Kobayashi, Mariko Takami, Ko Ozaki, Keita Ogawa, Wang Hongxuan, Daiki Shimizu, Daisuke Katsumi, Hiroko Yoshizawa, Shugo Komatsu, Tomozumi Takatani, Kiyoshi Hirahara, Haruhiko Koseki, Tomoro Hishiki, Shinichiro Motohashi","doi":"10.1111/cas.70008","DOIUrl":null,"url":null,"abstract":"<p>While antibody-dependent cellular cytotoxicity (ADCC) by anti-disialoganglioside GD2 monoclonal antibody (mAb) has succeeded in increasing the survival rate of high-risk patients with neuroblastoma, approximately 40%–50% of patients die from the disease. Recently, we developed induced pluripotent stem cell-derived natural killer T (iPS-NKT) cells, which exhibit NK-like cytotoxicity. However, whether iPS-NKT cells can induce ADCC function is unclear. Here, we investigated the ADCC of iPS-NKT cells and the efficacy of the combination treatment of anti-GD2 mAb and iPS-NKT cells against neuroblastoma. Anti-GD2 mAb enhanced the cytotoxicity and secretion of cytokines and cytotoxic granules of iPS-NKT cells, which expressed CD16 to GD2-expressing neuroblastoma cell lines. We also examined which Fcγ receptors contribute to ADCC of iPS-NKT cells. CD16 stimulation against iPS-NKT cells caused cytotoxicity and secretion of interferon-gamma, tumor necrosis factor, and granzyme B. In contrast, CD32 and CD64 stimulation did not. In vivo, the intratumor administration of anti-GD2 mAb and iPS-NKT cells significantly inhibited tumor growth compared with the other treatment groups: no treatment, anti-GD2 mAb alone, and iPS-NKT cells alone. In conclusion, iPS-NKT cells exhibit CD16-mediated ADCC, and the addition of iPS-NKT cells to anti-GD2 mAb therapy may be a potential approach for immunotherapy against neuroblastoma.</p>","PeriodicalId":9580,"journal":{"name":"Cancer Science","volume":"116 4","pages":"884-896"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cas.70008","citationCount":"0","resultStr":"{\"title\":\"Antibody-Dependent Cellular Cytotoxicity of iPS Cell-Derived Natural Killer T Cells by Anti-GD2 mAb for Neuroblastoma\",\"authors\":\"Katsuhiro Nishimura, Takahiro Aoki, Midori Kobayashi, Mariko Takami, Ko Ozaki, Keita Ogawa, Wang Hongxuan, Daiki Shimizu, Daisuke Katsumi, Hiroko Yoshizawa, Shugo Komatsu, Tomozumi Takatani, Kiyoshi Hirahara, Haruhiko Koseki, Tomoro Hishiki, Shinichiro Motohashi\",\"doi\":\"10.1111/cas.70008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>While antibody-dependent cellular cytotoxicity (ADCC) by anti-disialoganglioside GD2 monoclonal antibody (mAb) has succeeded in increasing the survival rate of high-risk patients with neuroblastoma, approximately 40%–50% of patients die from the disease. Recently, we developed induced pluripotent stem cell-derived natural killer T (iPS-NKT) cells, which exhibit NK-like cytotoxicity. However, whether iPS-NKT cells can induce ADCC function is unclear. Here, we investigated the ADCC of iPS-NKT cells and the efficacy of the combination treatment of anti-GD2 mAb and iPS-NKT cells against neuroblastoma. Anti-GD2 mAb enhanced the cytotoxicity and secretion of cytokines and cytotoxic granules of iPS-NKT cells, which expressed CD16 to GD2-expressing neuroblastoma cell lines. We also examined which Fcγ receptors contribute to ADCC of iPS-NKT cells. CD16 stimulation against iPS-NKT cells caused cytotoxicity and secretion of interferon-gamma, tumor necrosis factor, and granzyme B. In contrast, CD32 and CD64 stimulation did not. In vivo, the intratumor administration of anti-GD2 mAb and iPS-NKT cells significantly inhibited tumor growth compared with the other treatment groups: no treatment, anti-GD2 mAb alone, and iPS-NKT cells alone. In conclusion, iPS-NKT cells exhibit CD16-mediated ADCC, and the addition of iPS-NKT cells to anti-GD2 mAb therapy may be a potential approach for immunotherapy against neuroblastoma.</p>\",\"PeriodicalId\":9580,\"journal\":{\"name\":\"Cancer Science\",\"volume\":\"116 4\",\"pages\":\"884-896\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cas.70008\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cas.70008\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Science","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cas.70008","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Antibody-Dependent Cellular Cytotoxicity of iPS Cell-Derived Natural Killer T Cells by Anti-GD2 mAb for Neuroblastoma
While antibody-dependent cellular cytotoxicity (ADCC) by anti-disialoganglioside GD2 monoclonal antibody (mAb) has succeeded in increasing the survival rate of high-risk patients with neuroblastoma, approximately 40%–50% of patients die from the disease. Recently, we developed induced pluripotent stem cell-derived natural killer T (iPS-NKT) cells, which exhibit NK-like cytotoxicity. However, whether iPS-NKT cells can induce ADCC function is unclear. Here, we investigated the ADCC of iPS-NKT cells and the efficacy of the combination treatment of anti-GD2 mAb and iPS-NKT cells against neuroblastoma. Anti-GD2 mAb enhanced the cytotoxicity and secretion of cytokines and cytotoxic granules of iPS-NKT cells, which expressed CD16 to GD2-expressing neuroblastoma cell lines. We also examined which Fcγ receptors contribute to ADCC of iPS-NKT cells. CD16 stimulation against iPS-NKT cells caused cytotoxicity and secretion of interferon-gamma, tumor necrosis factor, and granzyme B. In contrast, CD32 and CD64 stimulation did not. In vivo, the intratumor administration of anti-GD2 mAb and iPS-NKT cells significantly inhibited tumor growth compared with the other treatment groups: no treatment, anti-GD2 mAb alone, and iPS-NKT cells alone. In conclusion, iPS-NKT cells exhibit CD16-mediated ADCC, and the addition of iPS-NKT cells to anti-GD2 mAb therapy may be a potential approach for immunotherapy against neuroblastoma.
期刊介绍:
Cancer Science (formerly Japanese Journal of Cancer Research) is a monthly publication of the Japanese Cancer Association. First published in 1907, the Journal continues to publish original articles, editorials, and letters to the editor, describing original research in the fields of basic, translational and clinical cancer research. The Journal also accepts reports and case reports.
Cancer Science aims to present highly significant and timely findings that have a significant clinical impact on oncologists or that may alter the disease concept of a tumor. The Journal will not publish case reports that describe a rare tumor or condition without new findings to be added to previous reports; combination of different tumors without new suggestive findings for oncological research; remarkable effect of already known treatments without suggestive data to explain the exceptional result. Review articles may also be published.