信号分离在衍射图像压缩和序列晶体学中的应用。

IF 6.1 3区 材料科学 Q1 Biochemistry, Genetics and Molecular Biology
Jérôme Kieffer, Julien Orlans, Nicolas Coquelle, Samuel Debionne, Shibom Basu, Alejandro Homs, Gianluca Santoni, Daniele De Sanctis
{"title":"信号分离在衍射图像压缩和序列晶体学中的应用。","authors":"Jérôme Kieffer, Julien Orlans, Nicolas Coquelle, Samuel Debionne, Shibom Basu, Alejandro Homs, Gianluca Santoni, Daniele De Sanctis","doi":"10.1107/S1600576724011038","DOIUrl":null,"url":null,"abstract":"<p><p>We present here a methodology for real-time analysis of diffraction images acquired at a high frame rate (925 Hz) and its application to macromolecular serial crystallography at ESRF. We introduce a new signal-separation algorithm, able to distinguish the amorphous (or powder diffraction) component from the diffraction signal originating from single crystals. It relies on the ability to work efficiently in azimuthal space and is implemented in <i>pyFAI</i>, the fast azimuthal integration library. Two applications are built upon this separation algorithm: a lossy compression algorithm and a peak-picking algorithm. The performances of both are assessed by comparing data quality after reduction with <i>XDS</i> and <i>CrystFEL</i>.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":"58 Pt 1","pages":"138-153"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11798513/pdf/","citationCount":"0","resultStr":"{\"title\":\"Application of signal separation to diffraction image compression and serial crystallography.\",\"authors\":\"Jérôme Kieffer, Julien Orlans, Nicolas Coquelle, Samuel Debionne, Shibom Basu, Alejandro Homs, Gianluca Santoni, Daniele De Sanctis\",\"doi\":\"10.1107/S1600576724011038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present here a methodology for real-time analysis of diffraction images acquired at a high frame rate (925 Hz) and its application to macromolecular serial crystallography at ESRF. We introduce a new signal-separation algorithm, able to distinguish the amorphous (or powder diffraction) component from the diffraction signal originating from single crystals. It relies on the ability to work efficiently in azimuthal space and is implemented in <i>pyFAI</i>, the fast azimuthal integration library. Two applications are built upon this separation algorithm: a lossy compression algorithm and a peak-picking algorithm. The performances of both are assessed by comparing data quality after reduction with <i>XDS</i> and <i>CrystFEL</i>.</p>\",\"PeriodicalId\":14950,\"journal\":{\"name\":\"Journal of Applied Crystallography\",\"volume\":\"58 Pt 1\",\"pages\":\"138-153\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11798513/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Crystallography\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600576724011038\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576724011038","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种高帧率(925 Hz)衍射图像的实时分析方法,并将其应用于ESRF的大分子序列晶体学。我们提出了一种新的信号分离算法,能够从单晶衍射信号中区分出非晶(或粉末衍射)成分。它依赖于在方位角空间中高效工作的能力,并在快速方位角集成库pyFAI中实现。在这种分离算法的基础上建立了两个应用程序:有损压缩算法和峰值选取算法。通过比较XDS和CrystFEL还原后的数据质量来评估两者的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of signal separation to diffraction image compression and serial crystallography.

We present here a methodology for real-time analysis of diffraction images acquired at a high frame rate (925 Hz) and its application to macromolecular serial crystallography at ESRF. We introduce a new signal-separation algorithm, able to distinguish the amorphous (or powder diffraction) component from the diffraction signal originating from single crystals. It relies on the ability to work efficiently in azimuthal space and is implemented in pyFAI, the fast azimuthal integration library. Two applications are built upon this separation algorithm: a lossy compression algorithm and a peak-picking algorithm. The performances of both are assessed by comparing data quality after reduction with XDS and CrystFEL.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.00
自引率
3.30%
发文量
178
审稿时长
4.7 months
期刊介绍: Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信