锁和钥匙:寻找最兼容的膜模拟物来研究天然环境中的膜蛋白。

IF 2.5 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Rahul Yadav , Debarghya Pratim Gupta , Chandan Singh
{"title":"锁和钥匙:寻找最兼容的膜模拟物来研究天然环境中的膜蛋白。","authors":"Rahul Yadav ,&nbsp;Debarghya Pratim Gupta ,&nbsp;Chandan Singh","doi":"10.1016/j.bbamem.2025.184414","DOIUrl":null,"url":null,"abstract":"<div><div>Membrane proteins play crucial roles in cellular signal transduction, molecule transport, host-pathogen interactions, and metabolic processes. However, mutations, changes in membrane properties, and environmental factors can lead to loss of protein function. This results in impaired ligand binding and misfolded structures that prevent proteins from adopting their native conformation. Many membrane proteins are also therapeutic targets in various diseases, where drugs can either restore or inhibit their specific functions. Understanding membrane protein structure and function is vital for advancing cell biology and physiology. Experimental studies often involve extracting proteins from their native environments and reconstituting them in membrane mimetics like detergents, bicelles, amphipols, nanodiscs, and liposomes. These mimetics replicate aspects of native membranes, aiding in the study of protein behavior outside living cells. Scientists continuously explore new, more native-like membrane mimetics to improve experimental accuracy. This dynamic field involves evaluating the advantages and disadvantages of different mimetics and optimizing the reconstitution process to better mimic natural conditions.</div></div>","PeriodicalId":8831,"journal":{"name":"Biochimica et biophysica acta. Biomembranes","volume":"1867 3","pages":"Article 184414"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lock and key: Quest to find the most compatible membrane mimetic for studying membrane proteins in native environment\",\"authors\":\"Rahul Yadav ,&nbsp;Debarghya Pratim Gupta ,&nbsp;Chandan Singh\",\"doi\":\"10.1016/j.bbamem.2025.184414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Membrane proteins play crucial roles in cellular signal transduction, molecule transport, host-pathogen interactions, and metabolic processes. However, mutations, changes in membrane properties, and environmental factors can lead to loss of protein function. This results in impaired ligand binding and misfolded structures that prevent proteins from adopting their native conformation. Many membrane proteins are also therapeutic targets in various diseases, where drugs can either restore or inhibit their specific functions. Understanding membrane protein structure and function is vital for advancing cell biology and physiology. Experimental studies often involve extracting proteins from their native environments and reconstituting them in membrane mimetics like detergents, bicelles, amphipols, nanodiscs, and liposomes. These mimetics replicate aspects of native membranes, aiding in the study of protein behavior outside living cells. Scientists continuously explore new, more native-like membrane mimetics to improve experimental accuracy. This dynamic field involves evaluating the advantages and disadvantages of different mimetics and optimizing the reconstitution process to better mimic natural conditions.</div></div>\",\"PeriodicalId\":8831,\"journal\":{\"name\":\"Biochimica et biophysica acta. Biomembranes\",\"volume\":\"1867 3\",\"pages\":\"Article 184414\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Biomembranes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005273625000082\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005273625000082","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

膜蛋白在细胞信号转导、分子运输、宿主-病原体相互作用和代谢过程中起着至关重要的作用。然而,突变、膜特性的改变和环境因素可导致蛋白质功能的丧失。这导致配体结合受损和错误折叠结构,阻止蛋白质采用其天然构象。许多膜蛋白也是各种疾病的治疗靶点,药物可以恢复或抑制其特定功能。了解膜蛋白的结构和功能对推进细胞生物学和生理学至关重要。实验研究通常涉及从天然环境中提取蛋白质,并将其重组为膜模拟物,如洗涤剂、双胞体、双极体、纳米圆盘和脂质体。这些模拟物复制了天然膜的各个方面,有助于研究活细胞外的蛋白质行为。科学家们不断探索新的、更像天然膜的模拟物,以提高实验的准确性。这一动态领域涉及评估不同模拟物的优点和缺点,并优化重构过程以更好地模拟自然条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lock and key: Quest to find the most compatible membrane mimetic for studying membrane proteins in native environment

Lock and key: Quest to find the most compatible membrane mimetic for studying membrane proteins in native environment
Membrane proteins play crucial roles in cellular signal transduction, molecule transport, host-pathogen interactions, and metabolic processes. However, mutations, changes in membrane properties, and environmental factors can lead to loss of protein function. This results in impaired ligand binding and misfolded structures that prevent proteins from adopting their native conformation. Many membrane proteins are also therapeutic targets in various diseases, where drugs can either restore or inhibit their specific functions. Understanding membrane protein structure and function is vital for advancing cell biology and physiology. Experimental studies often involve extracting proteins from their native environments and reconstituting them in membrane mimetics like detergents, bicelles, amphipols, nanodiscs, and liposomes. These mimetics replicate aspects of native membranes, aiding in the study of protein behavior outside living cells. Scientists continuously explore new, more native-like membrane mimetics to improve experimental accuracy. This dynamic field involves evaluating the advantages and disadvantages of different mimetics and optimizing the reconstitution process to better mimic natural conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochimica et biophysica acta. Biomembranes
Biochimica et biophysica acta. Biomembranes 生物-生化与分子生物学
CiteScore
8.20
自引率
5.90%
发文量
175
审稿时长
2.3 months
期刊介绍: BBA Biomembranes has its main focus on membrane structure, function and biomolecular organization, membrane proteins, receptors, channels and anchors, fluidity and composition, model membranes and liposomes, membrane surface studies and ligand interactions, transport studies, and membrane dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信