GM-CSF 促使多发性风湿性关节炎的巨噬细胞产生 IL-6。

IF 20.3 1区 医学 Q1 RHEUMATOLOGY
William F Jiemy, Anqi Zhang, Wayel H Abdulahad, Rosanne D Reitsema, Yannick van Sleen, Maria Sandovici, Guillermo Carvajal Alegria, Divi Cornec, Valérie Devauchelle-Pensec, Patrice Hemon, Baptiste Quéré, Sara Boukhlal, Caroline Roozendaal, Thomas Christian Kwee, Bhaskar Dasgupta, Arjan Diepstra, Peter Heeringa, Elisabeth Brouwer, Kornelis S M van der Geest
{"title":"GM-CSF 促使多发性风湿性关节炎的巨噬细胞产生 IL-6。","authors":"William F Jiemy, Anqi Zhang, Wayel H Abdulahad, Rosanne D Reitsema, Yannick van Sleen, Maria Sandovici, Guillermo Carvajal Alegria, Divi Cornec, Valérie Devauchelle-Pensec, Patrice Hemon, Baptiste Quéré, Sara Boukhlal, Caroline Roozendaal, Thomas Christian Kwee, Bhaskar Dasgupta, Arjan Diepstra, Peter Heeringa, Elisabeth Brouwer, Kornelis S M van der Geest","doi":"10.1016/j.ard.2025.01.004","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Insight into the immunopathology of polymyalgia rheumatica (PMR) is scarce and mainly derived from peripheral blood studies. The limited data available point towards macrophages as potential key players in PMR. This study aimed to identify the factors driving proinflammatory macrophage development and their functions in the immunopathology of PMR.</p><p><strong>Methods: </strong>Monocyte phenotypes were investigated by flow cytometry in peripheral blood (PMR, n = 22; healthy controls, n = 20) and paired subacromial-subdeltoid (SASD) bursal fluid (PMR, n = 9). Macrophages in SASD bursa were characterised by immunohistochemistry and immunofluorescence (PMR, n = 12; controls undergoing shoulder replacement surgery, n = 10). The functions of cytokines expressed in PMR-affected tissue were examined using macrophage differentiation cultures (PMR, n = 7; healthy controls, n = 7).</p><p><strong>Results: </strong>Monocytes (CD14<sup>high</sup>CD16<sup>-</sup> and CD14<sup>high</sup>CD16<sup>+</sup>) were increased in blood of PMR patients and activated in bursal fluid. Macrophages dominated immune infiltrates in PMR-affected tissue, expressing various proinflammatory cytokines. While interleukin (IL)-6 and interferon-gamma (IFN-γ) expression was abundant in both PMR and control tissue, granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) were significantly increased in PMR tissue. Macrophages in PMR-affected tissue showed an elevated CD206/folate receptor β ratio, reflecting a GM-CSF skewed signature. A combination of GM-CSF/M-CSF/IFN-γ significantly boosted IL-6 production in vitro, while limited IL-6 production was observed without GM-CSF.</p><p><strong>Conclusions: </strong>The monocyte compartment is expanded and activated in PMR. Macrophages in PMR-affected tissue produce abundant proinflammatory cytokines such as IL-6. A network of locally expressed cytokines, including GM-CSF, M-CSF, and IFN-γ, may drive the proinflammatory functions of these macrophages. Overall, macrophages may constitute key therapeutic targets for PMR.</p>","PeriodicalId":8087,"journal":{"name":"Annals of the Rheumatic Diseases","volume":" ","pages":""},"PeriodicalIF":20.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GM-CSF drives IL-6 production by macrophages in polymyalgia rheumatica.\",\"authors\":\"William F Jiemy, Anqi Zhang, Wayel H Abdulahad, Rosanne D Reitsema, Yannick van Sleen, Maria Sandovici, Guillermo Carvajal Alegria, Divi Cornec, Valérie Devauchelle-Pensec, Patrice Hemon, Baptiste Quéré, Sara Boukhlal, Caroline Roozendaal, Thomas Christian Kwee, Bhaskar Dasgupta, Arjan Diepstra, Peter Heeringa, Elisabeth Brouwer, Kornelis S M van der Geest\",\"doi\":\"10.1016/j.ard.2025.01.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Insight into the immunopathology of polymyalgia rheumatica (PMR) is scarce and mainly derived from peripheral blood studies. The limited data available point towards macrophages as potential key players in PMR. This study aimed to identify the factors driving proinflammatory macrophage development and their functions in the immunopathology of PMR.</p><p><strong>Methods: </strong>Monocyte phenotypes were investigated by flow cytometry in peripheral blood (PMR, n = 22; healthy controls, n = 20) and paired subacromial-subdeltoid (SASD) bursal fluid (PMR, n = 9). Macrophages in SASD bursa were characterised by immunohistochemistry and immunofluorescence (PMR, n = 12; controls undergoing shoulder replacement surgery, n = 10). The functions of cytokines expressed in PMR-affected tissue were examined using macrophage differentiation cultures (PMR, n = 7; healthy controls, n = 7).</p><p><strong>Results: </strong>Monocytes (CD14<sup>high</sup>CD16<sup>-</sup> and CD14<sup>high</sup>CD16<sup>+</sup>) were increased in blood of PMR patients and activated in bursal fluid. Macrophages dominated immune infiltrates in PMR-affected tissue, expressing various proinflammatory cytokines. While interleukin (IL)-6 and interferon-gamma (IFN-γ) expression was abundant in both PMR and control tissue, granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) were significantly increased in PMR tissue. Macrophages in PMR-affected tissue showed an elevated CD206/folate receptor β ratio, reflecting a GM-CSF skewed signature. A combination of GM-CSF/M-CSF/IFN-γ significantly boosted IL-6 production in vitro, while limited IL-6 production was observed without GM-CSF.</p><p><strong>Conclusions: </strong>The monocyte compartment is expanded and activated in PMR. Macrophages in PMR-affected tissue produce abundant proinflammatory cytokines such as IL-6. A network of locally expressed cytokines, including GM-CSF, M-CSF, and IFN-γ, may drive the proinflammatory functions of these macrophages. Overall, macrophages may constitute key therapeutic targets for PMR.</p>\",\"PeriodicalId\":8087,\"journal\":{\"name\":\"Annals of the Rheumatic Diseases\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":20.3000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the Rheumatic Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ard.2025.01.004\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RHEUMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Rheumatic Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ard.2025.01.004","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RHEUMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
GM-CSF drives IL-6 production by macrophages in polymyalgia rheumatica.

Objectives: Insight into the immunopathology of polymyalgia rheumatica (PMR) is scarce and mainly derived from peripheral blood studies. The limited data available point towards macrophages as potential key players in PMR. This study aimed to identify the factors driving proinflammatory macrophage development and their functions in the immunopathology of PMR.

Methods: Monocyte phenotypes were investigated by flow cytometry in peripheral blood (PMR, n = 22; healthy controls, n = 20) and paired subacromial-subdeltoid (SASD) bursal fluid (PMR, n = 9). Macrophages in SASD bursa were characterised by immunohistochemistry and immunofluorescence (PMR, n = 12; controls undergoing shoulder replacement surgery, n = 10). The functions of cytokines expressed in PMR-affected tissue were examined using macrophage differentiation cultures (PMR, n = 7; healthy controls, n = 7).

Results: Monocytes (CD14highCD16- and CD14highCD16+) were increased in blood of PMR patients and activated in bursal fluid. Macrophages dominated immune infiltrates in PMR-affected tissue, expressing various proinflammatory cytokines. While interleukin (IL)-6 and interferon-gamma (IFN-γ) expression was abundant in both PMR and control tissue, granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) were significantly increased in PMR tissue. Macrophages in PMR-affected tissue showed an elevated CD206/folate receptor β ratio, reflecting a GM-CSF skewed signature. A combination of GM-CSF/M-CSF/IFN-γ significantly boosted IL-6 production in vitro, while limited IL-6 production was observed without GM-CSF.

Conclusions: The monocyte compartment is expanded and activated in PMR. Macrophages in PMR-affected tissue produce abundant proinflammatory cytokines such as IL-6. A network of locally expressed cytokines, including GM-CSF, M-CSF, and IFN-γ, may drive the proinflammatory functions of these macrophages. Overall, macrophages may constitute key therapeutic targets for PMR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of the Rheumatic Diseases
Annals of the Rheumatic Diseases 医学-风湿病学
CiteScore
35.00
自引率
9.90%
发文量
3728
审稿时长
1.4 months
期刊介绍: Annals of the Rheumatic Diseases (ARD) is an international peer-reviewed journal covering all aspects of rheumatology, which includes the full spectrum of musculoskeletal conditions, arthritic disease, and connective tissue disorders. ARD publishes basic, clinical, and translational scientific research, including the most important recommendations for the management of various conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信