表达短神经肽 F 的离散神经元群在黑腹果蝇睡眠诱导中的作用

IF 2.4 4区 心理学 Q2 BEHAVIORAL SCIENCES
Jamie M. Stonemetz, Nikoleta Chantzi, Emily L. Perkins, Aaliyah J. Peralta, Debra R. Possidente, John P. Tagariello, Marryn M. Bennett, Hooralain Alnassar, Andrew M. Dacks, Christopher G. Vecsey
{"title":"表达短神经肽 F 的离散神经元群在黑腹果蝇睡眠诱导中的作用","authors":"Jamie M. Stonemetz,&nbsp;Nikoleta Chantzi,&nbsp;Emily L. Perkins,&nbsp;Aaliyah J. Peralta,&nbsp;Debra R. Possidente,&nbsp;John P. Tagariello,&nbsp;Marryn M. Bennett,&nbsp;Hooralain Alnassar,&nbsp;Andrew M. Dacks,&nbsp;Christopher G. Vecsey","doi":"10.1111/gbb.70010","DOIUrl":null,"url":null,"abstract":"<p>Sleep is of vital importance in our lives, yet we are far from understanding the neuronal networks that control the amount and timing of sleep. There is substantial conservation of known sleep-regulating transmitters, allowing for studies in simpler organisms to lead the way in gaining insight into the organization of sleep control circuits. In <i>Drosophila melanogaster</i>, we recently showed that optogenetic activation of neurons that produce the neuropeptide Y (NPY)-related transmitter short neuropeptide F (sNPF) increases time spent asleep. However, sNPF is expressed in several neuronal populations, and thus it is unknown which of those populations play roles in the sleep-promoting effect. In this study, we addressed this issue using a genetic approach to limit optogenetic activation to subsets of sNPF-expressing neurons. We found that sleep promotion was shorter-lived when cryptochrome (CRY)-positive neurons were excluded from being activated. Pigment-dispersing factor (PDF) neurons were not required for sleep promotion, nor were mushroom body (MB) neurons. Acute reactions to a short, 10-s period of optogenetic activation were largely unchanged by excluding activation of the three neuronal populations mentioned above. Together, these results suggest that clock neurons that are CRY-positive and PDF-negative are important contributors to the long-lasting sleep promotion produced by sNPF neuron activation. However, other neurons targeted by the sNPF-GAL4 driver appear to mediate the more rapid behavioral responses. Future studies will seek to identify these additional sNPF neuron populations and to determine how sNPF-expressing clock neurons act in concert with other neuronal circuits to promote sleep.</p>","PeriodicalId":50426,"journal":{"name":"Genes Brain and Behavior","volume":"24 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbb.70010","citationCount":"0","resultStr":"{\"title\":\"The Roles of Discrete Populations of Neurons Expressing Short Neuropeptide F in Sleep Induction in Drosophila melanogaster\",\"authors\":\"Jamie M. Stonemetz,&nbsp;Nikoleta Chantzi,&nbsp;Emily L. Perkins,&nbsp;Aaliyah J. Peralta,&nbsp;Debra R. Possidente,&nbsp;John P. Tagariello,&nbsp;Marryn M. Bennett,&nbsp;Hooralain Alnassar,&nbsp;Andrew M. Dacks,&nbsp;Christopher G. Vecsey\",\"doi\":\"10.1111/gbb.70010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sleep is of vital importance in our lives, yet we are far from understanding the neuronal networks that control the amount and timing of sleep. There is substantial conservation of known sleep-regulating transmitters, allowing for studies in simpler organisms to lead the way in gaining insight into the organization of sleep control circuits. In <i>Drosophila melanogaster</i>, we recently showed that optogenetic activation of neurons that produce the neuropeptide Y (NPY)-related transmitter short neuropeptide F (sNPF) increases time spent asleep. However, sNPF is expressed in several neuronal populations, and thus it is unknown which of those populations play roles in the sleep-promoting effect. In this study, we addressed this issue using a genetic approach to limit optogenetic activation to subsets of sNPF-expressing neurons. We found that sleep promotion was shorter-lived when cryptochrome (CRY)-positive neurons were excluded from being activated. Pigment-dispersing factor (PDF) neurons were not required for sleep promotion, nor were mushroom body (MB) neurons. Acute reactions to a short, 10-s period of optogenetic activation were largely unchanged by excluding activation of the three neuronal populations mentioned above. Together, these results suggest that clock neurons that are CRY-positive and PDF-negative are important contributors to the long-lasting sleep promotion produced by sNPF neuron activation. However, other neurons targeted by the sNPF-GAL4 driver appear to mediate the more rapid behavioral responses. Future studies will seek to identify these additional sNPF neuron populations and to determine how sNPF-expressing clock neurons act in concert with other neuronal circuits to promote sleep.</p>\",\"PeriodicalId\":50426,\"journal\":{\"name\":\"Genes Brain and Behavior\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbb.70010\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes Brain and Behavior\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gbb.70010\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes Brain and Behavior","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbb.70010","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Roles of Discrete Populations of Neurons Expressing Short Neuropeptide F in Sleep Induction in Drosophila melanogaster

The Roles of Discrete Populations of Neurons Expressing Short Neuropeptide F in Sleep Induction in Drosophila melanogaster

Sleep is of vital importance in our lives, yet we are far from understanding the neuronal networks that control the amount and timing of sleep. There is substantial conservation of known sleep-regulating transmitters, allowing for studies in simpler organisms to lead the way in gaining insight into the organization of sleep control circuits. In Drosophila melanogaster, we recently showed that optogenetic activation of neurons that produce the neuropeptide Y (NPY)-related transmitter short neuropeptide F (sNPF) increases time spent asleep. However, sNPF is expressed in several neuronal populations, and thus it is unknown which of those populations play roles in the sleep-promoting effect. In this study, we addressed this issue using a genetic approach to limit optogenetic activation to subsets of sNPF-expressing neurons. We found that sleep promotion was shorter-lived when cryptochrome (CRY)-positive neurons were excluded from being activated. Pigment-dispersing factor (PDF) neurons were not required for sleep promotion, nor were mushroom body (MB) neurons. Acute reactions to a short, 10-s period of optogenetic activation were largely unchanged by excluding activation of the three neuronal populations mentioned above. Together, these results suggest that clock neurons that are CRY-positive and PDF-negative are important contributors to the long-lasting sleep promotion produced by sNPF neuron activation. However, other neurons targeted by the sNPF-GAL4 driver appear to mediate the more rapid behavioral responses. Future studies will seek to identify these additional sNPF neuron populations and to determine how sNPF-expressing clock neurons act in concert with other neuronal circuits to promote sleep.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genes Brain and Behavior
Genes Brain and Behavior 医学-行为科学
CiteScore
6.80
自引率
4.00%
发文量
62
审稿时长
4-8 weeks
期刊介绍: Genes, Brain and Behavior was launched in 2002 with the aim of publishing top quality research in behavioral and neural genetics in their broadest sense. The emphasis is on the analysis of the behavioral and neural phenotypes under consideration, the unifying theme being the genetic approach as a tool to increase our understanding of these phenotypes. Genes Brain and Behavior is pleased to offer the following features: 8 issues per year online submissions with first editorial decisions within 3-4 weeks and fast publication at Wiley-Blackwells High visibility through its coverage by PubMed/Medline, Current Contents and other major abstracting and indexing services Inclusion in the Wiley-Blackwell consortial license, extending readership to thousands of international libraries and institutions A large and varied editorial board comprising of international specialists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信