利用鲸鱼优化和迁移学习分类算法将CT图像转换成图形进行胰腺肿瘤检测

IF 2.5 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yusuf Alaca, Ömer Faruk Akmeşe
{"title":"利用鲸鱼优化和迁移学习分类算法将CT图像转换成图形进行胰腺肿瘤检测","authors":"Yusuf Alaca,&nbsp;Ömer Faruk Akmeşe","doi":"10.1002/ima.70040","DOIUrl":null,"url":null,"abstract":"<p>Pancreatic cancer is one of the most aggressive types of cancer, known for its high mortality rate, as it is often diagnosed at an advanced stage. Early diagnosis holds the potential to prolong patients' lifespans and improve treatment success rates. In this study, an innovative method is proposed to enhance the diagnosis of pancreatic cancer. Computed tomography (CT) images were converted into graphs using the Harris Corner Detection Algorithm and analyzed using deep learning models via transfer learning. DenseNet121 and InceptionV3 transfer learning models were trained on graph-based data, and model parameters were optimized using the Whale Optimization Algorithm (WOA). Additionally, classification algorithms such as k-Nearest Neighbors (k-NN), Support Vector Machines (SVM), and Random Forests (RF) were integrated into the analysis of the extracted features. The best results were achieved using the k-NN classification algorithm on features optimized by WOA, yielding an accuracy of 92.10% and an F1 score of 92.74%. The study demonstrated that graph-based transformation enabled more effective modeling of spatial relationships, thereby enhancing the performance of deep learning models. WOA offered significant superiority compared to other methods in parameter optimization. This study aims to contribute to the development of a reliable diagnostic system that can be integrated into clinical applications. In the future, the use of larger and more diverse datasets, along with different graph-based methods, could enhance the generalizability and performance of the proposed approach. The proposed model has the potential to serve as a decision support tool for physicians, particularly in early diagnosis, offering an opportunity to improve patients' quality of life.</p>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ima.70040","citationCount":"0","resultStr":"{\"title\":\"Pancreatic Tumor Detection From CT Images Converted to Graphs Using Whale Optimization and Classification Algorithms With Transfer Learning\",\"authors\":\"Yusuf Alaca,&nbsp;Ömer Faruk Akmeşe\",\"doi\":\"10.1002/ima.70040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pancreatic cancer is one of the most aggressive types of cancer, known for its high mortality rate, as it is often diagnosed at an advanced stage. Early diagnosis holds the potential to prolong patients' lifespans and improve treatment success rates. In this study, an innovative method is proposed to enhance the diagnosis of pancreatic cancer. Computed tomography (CT) images were converted into graphs using the Harris Corner Detection Algorithm and analyzed using deep learning models via transfer learning. DenseNet121 and InceptionV3 transfer learning models were trained on graph-based data, and model parameters were optimized using the Whale Optimization Algorithm (WOA). Additionally, classification algorithms such as k-Nearest Neighbors (k-NN), Support Vector Machines (SVM), and Random Forests (RF) were integrated into the analysis of the extracted features. The best results were achieved using the k-NN classification algorithm on features optimized by WOA, yielding an accuracy of 92.10% and an F1 score of 92.74%. The study demonstrated that graph-based transformation enabled more effective modeling of spatial relationships, thereby enhancing the performance of deep learning models. WOA offered significant superiority compared to other methods in parameter optimization. This study aims to contribute to the development of a reliable diagnostic system that can be integrated into clinical applications. In the future, the use of larger and more diverse datasets, along with different graph-based methods, could enhance the generalizability and performance of the proposed approach. The proposed model has the potential to serve as a decision support tool for physicians, particularly in early diagnosis, offering an opportunity to improve patients' quality of life.</p>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"35 2\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ima.70040\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.70040\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70040","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

胰腺癌是最具侵袭性的癌症之一,以其高死亡率而闻名,因为它通常在晚期被诊断出来。早期诊断具有延长患者寿命和提高治疗成功率的潜力。本研究提出了一种创新的方法来提高胰腺癌的诊断。计算机断层扫描(CT)图像使用Harris角检测算法转换成图形,并通过迁移学习使用深度学习模型进行分析。在基于图的数据上训练DenseNet121和InceptionV3迁移学习模型,并使用Whale Optimization Algorithm (WOA)对模型参数进行优化。此外,将k-最近邻(k-NN)、支持向量机(SVM)和随机森林(RF)等分类算法集成到提取的特征分析中。使用k-NN分类算法对WOA优化的特征进行分类,准确率为92.10%,F1得分为92.74%。研究表明,基于图的转换可以更有效地对空间关系进行建模,从而提高深度学习模型的性能。WOA方法在参数优化方面具有明显的优越性。本研究旨在促进可靠的诊断系统的发展,并将其整合到临床应用中。在未来,使用更大、更多样化的数据集,以及不同的基于图的方法,可以增强所提出方法的泛化性和性能。所提出的模型有潜力作为医生的决策支持工具,特别是在早期诊断中,为改善患者的生活质量提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pancreatic Tumor Detection From CT Images Converted to Graphs Using Whale Optimization and Classification Algorithms With Transfer Learning

Pancreatic Tumor Detection From CT Images Converted to Graphs Using Whale Optimization and Classification Algorithms With Transfer Learning

Pancreatic cancer is one of the most aggressive types of cancer, known for its high mortality rate, as it is often diagnosed at an advanced stage. Early diagnosis holds the potential to prolong patients' lifespans and improve treatment success rates. In this study, an innovative method is proposed to enhance the diagnosis of pancreatic cancer. Computed tomography (CT) images were converted into graphs using the Harris Corner Detection Algorithm and analyzed using deep learning models via transfer learning. DenseNet121 and InceptionV3 transfer learning models were trained on graph-based data, and model parameters were optimized using the Whale Optimization Algorithm (WOA). Additionally, classification algorithms such as k-Nearest Neighbors (k-NN), Support Vector Machines (SVM), and Random Forests (RF) were integrated into the analysis of the extracted features. The best results were achieved using the k-NN classification algorithm on features optimized by WOA, yielding an accuracy of 92.10% and an F1 score of 92.74%. The study demonstrated that graph-based transformation enabled more effective modeling of spatial relationships, thereby enhancing the performance of deep learning models. WOA offered significant superiority compared to other methods in parameter optimization. This study aims to contribute to the development of a reliable diagnostic system that can be integrated into clinical applications. In the future, the use of larger and more diverse datasets, along with different graph-based methods, could enhance the generalizability and performance of the proposed approach. The proposed model has the potential to serve as a decision support tool for physicians, particularly in early diagnosis, offering an opportunity to improve patients' quality of life.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信