phd3介导的早产儿视网膜病变视网膜新生的抑制作用

IF 2.9 4区 医学 Q2 Medicine
Jiawei Yu, Haifeng Liu, Yue Xing, Yuan Gao
{"title":"phd3介导的早产儿视网膜病变视网膜新生的抑制作用","authors":"Jiawei Yu,&nbsp;Haifeng Liu,&nbsp;Yue Xing,&nbsp;Yuan Gao","doi":"10.1111/1440-1681.70020","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Retinopathy of prematurity is characterised by abnormal retinal neovascularization in response to hypoxia stress. Prolyl 4-hydroxylase domain protein 3 (PHD3) is a well-known molecular oxygen sensor. However, the role that PHD3 plays in retinopathy of prematurity remains unclear. In this work, a mouse model of oxygen-induced retinopathy (OIR) was used for in vivo studies. Compared with the mice in room air, OIR mice showed sprouting of retinal neovascularization and increased level of PHD3. It was further found that PHD3 overexpression weakened OIR-induced retinal neovascularization and promoted cell apoptosis in the retina, indicating a mitigative effect on retinopathy. More importantly, OIR-induced upregulation of hypoxia inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGFA) was offset by PHD3 overexpression. In in vitro experiments, mouse retinal microvascular endothelial cells (MRMECs) were cultured under hypoxic conditions. The functions of endothelial cells including cell proliferation, cell migration, and tube formation ability were suppressed by PHD3, suggesting an anti-angiogenesis effect of PHD3. In line with in vivo experiments, the expression of HIF-1α and VEGFA levels declined in endothelial cells when PHD3 was overexpressed. Taken together, PHD3 alleviates retinopathy of prematurity through anti-angiogenesis, and the core mechanism may involve cell apoptosis of retina endothelial cell and HIF-1α–VEGFA axis. These findings provide exciting new insights into the pathogenesis of retinopathy of prematurity, and could offer new treatment directions.</p>\n </div>","PeriodicalId":50684,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":"52 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PHD3-Mediated Inhibition of Retinal Neovascularization in Retinopathy of Prematurity\",\"authors\":\"Jiawei Yu,&nbsp;Haifeng Liu,&nbsp;Yue Xing,&nbsp;Yuan Gao\",\"doi\":\"10.1111/1440-1681.70020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Retinopathy of prematurity is characterised by abnormal retinal neovascularization in response to hypoxia stress. Prolyl 4-hydroxylase domain protein 3 (PHD3) is a well-known molecular oxygen sensor. However, the role that PHD3 plays in retinopathy of prematurity remains unclear. In this work, a mouse model of oxygen-induced retinopathy (OIR) was used for in vivo studies. Compared with the mice in room air, OIR mice showed sprouting of retinal neovascularization and increased level of PHD3. It was further found that PHD3 overexpression weakened OIR-induced retinal neovascularization and promoted cell apoptosis in the retina, indicating a mitigative effect on retinopathy. More importantly, OIR-induced upregulation of hypoxia inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGFA) was offset by PHD3 overexpression. In in vitro experiments, mouse retinal microvascular endothelial cells (MRMECs) were cultured under hypoxic conditions. The functions of endothelial cells including cell proliferation, cell migration, and tube formation ability were suppressed by PHD3, suggesting an anti-angiogenesis effect of PHD3. In line with in vivo experiments, the expression of HIF-1α and VEGFA levels declined in endothelial cells when PHD3 was overexpressed. Taken together, PHD3 alleviates retinopathy of prematurity through anti-angiogenesis, and the core mechanism may involve cell apoptosis of retina endothelial cell and HIF-1α–VEGFA axis. These findings provide exciting new insights into the pathogenesis of retinopathy of prematurity, and could offer new treatment directions.</p>\\n </div>\",\"PeriodicalId\":50684,\"journal\":{\"name\":\"Clinical and Experimental Pharmacology and Physiology\",\"volume\":\"52 4\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Experimental Pharmacology and Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1440-1681.70020\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Pharmacology and Physiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1440-1681.70020","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

早产儿视网膜病变的特征是缺氧应激下视网膜新生血管的异常形成。脯氨酰4-羟化酶结构域蛋白3 (PHD3)是一种众所周知的分子氧传感器。然而,PHD3在早产儿视网膜病变中的作用尚不清楚。在这项工作中,使用小鼠氧诱导视网膜病变(OIR)模型进行体内研究。与室内空气中的小鼠相比,OIR小鼠视网膜新生血管萌发,PHD3水平升高。进一步发现,PHD3过表达可减弱oir诱导的视网膜新生血管形成,促进视网膜细胞凋亡,提示其对视网膜病变有缓解作用。更重要的是,oir诱导的缺氧诱导因子-1α (HIF-1α)和血管内皮生长因子(VEGFA)的上调被PHD3的过表达所抵消。体外实验,在缺氧条件下培养小鼠视网膜微血管内皮细胞(MRMECs)。PHD3可抑制内皮细胞增殖、细胞迁移和成管能力等功能,提示PHD3具有抗血管生成作用。体内实验结果显示,当PHD3过表达时,内皮细胞中HIF-1α和VEGFA的表达水平下降。综上所述,PHD3通过抗血管生成来缓解早产儿视网膜病变,其核心机制可能与视网膜内皮细胞和HIF-1α-VEGFA轴细胞凋亡有关。这些发现为早产儿视网膜病变的发病机制提供了令人兴奋的新见解,并可能提供新的治疗方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PHD3-Mediated Inhibition of Retinal Neovascularization in Retinopathy of Prematurity

Retinopathy of prematurity is characterised by abnormal retinal neovascularization in response to hypoxia stress. Prolyl 4-hydroxylase domain protein 3 (PHD3) is a well-known molecular oxygen sensor. However, the role that PHD3 plays in retinopathy of prematurity remains unclear. In this work, a mouse model of oxygen-induced retinopathy (OIR) was used for in vivo studies. Compared with the mice in room air, OIR mice showed sprouting of retinal neovascularization and increased level of PHD3. It was further found that PHD3 overexpression weakened OIR-induced retinal neovascularization and promoted cell apoptosis in the retina, indicating a mitigative effect on retinopathy. More importantly, OIR-induced upregulation of hypoxia inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGFA) was offset by PHD3 overexpression. In in vitro experiments, mouse retinal microvascular endothelial cells (MRMECs) were cultured under hypoxic conditions. The functions of endothelial cells including cell proliferation, cell migration, and tube formation ability were suppressed by PHD3, suggesting an anti-angiogenesis effect of PHD3. In line with in vivo experiments, the expression of HIF-1α and VEGFA levels declined in endothelial cells when PHD3 was overexpressed. Taken together, PHD3 alleviates retinopathy of prematurity through anti-angiogenesis, and the core mechanism may involve cell apoptosis of retina endothelial cell and HIF-1α–VEGFA axis. These findings provide exciting new insights into the pathogenesis of retinopathy of prematurity, and could offer new treatment directions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
128
审稿时长
6 months
期刊介绍: Clinical and Experimental Pharmacology and Physiology is an international journal founded in 1974 by Mike Rand, Austin Doyle, John Coghlan and Paul Korner. Our focus is new frontiers in physiology and pharmacology, emphasizing the translation of basic research to clinical practice. We publish original articles, invited reviews and our exciting, cutting-edge Frontiers-in-Research series’.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信