预训练大视觉模型的低秩自适应改进肺结节恶性分类

IF 2.7 Q3 ENGINEERING, BIOMEDICAL
Benjamin P. Veasey;Amir A. Amini
{"title":"预训练大视觉模型的低秩自适应改进肺结节恶性分类","authors":"Benjamin P. Veasey;Amir A. Amini","doi":"10.1109/OJEMB.2025.3530841","DOIUrl":null,"url":null,"abstract":"<italic>Goal:</i> This paper investigates using Low-Rank Adaptation (LoRA) to adapt large vision models (LVMs) pretrained with self-supervised learning (SSL) for lung nodule malignancy classification. Inspired by LoRA's success in the field of Natural Language Processing, we hypothesized that such an adaptation technique can significantly improve classification performance, parameter efficiency, and training speed for the novel application of lung image cancer diagnostic. <italic>Methods:</i> Utilizing two comprehensive lung nodule datasets, NLSTx and LIDC, which together encompass a diverse array of biopsy- and radiologist-confirmed lung CT scans, our rigorous experimental setup demonstrates that LoRA-adapted models markedly surpass traditional fine-tuning methods. <italic>Results:</i> The best LoRA-adapted model achieved a 3% increase in ROC AUC over the state-of-the-art model, utilized 89.9% fewer parameters, and reduced training times by 36.5%. <italic>Conclusions:</i> Integrating LoRA with out-of-domain pretrained LVMs offers a promising avenue for enhancing performance of lung nodule malignancy classification. The annotations for the NLSTx dataset are also released with this paper on GitHub at <uri>https://github.com/benVZ/NLSTx</uri>.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"296-304"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10843806","citationCount":"0","resultStr":"{\"title\":\"Low-Rank Adaptation of Pre-Trained Large Vision Models for Improved Lung Nodule Malignancy Classification\",\"authors\":\"Benjamin P. Veasey;Amir A. Amini\",\"doi\":\"10.1109/OJEMB.2025.3530841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<italic>Goal:</i> This paper investigates using Low-Rank Adaptation (LoRA) to adapt large vision models (LVMs) pretrained with self-supervised learning (SSL) for lung nodule malignancy classification. Inspired by LoRA's success in the field of Natural Language Processing, we hypothesized that such an adaptation technique can significantly improve classification performance, parameter efficiency, and training speed for the novel application of lung image cancer diagnostic. <italic>Methods:</i> Utilizing two comprehensive lung nodule datasets, NLSTx and LIDC, which together encompass a diverse array of biopsy- and radiologist-confirmed lung CT scans, our rigorous experimental setup demonstrates that LoRA-adapted models markedly surpass traditional fine-tuning methods. <italic>Results:</i> The best LoRA-adapted model achieved a 3% increase in ROC AUC over the state-of-the-art model, utilized 89.9% fewer parameters, and reduced training times by 36.5%. <italic>Conclusions:</i> Integrating LoRA with out-of-domain pretrained LVMs offers a promising avenue for enhancing performance of lung nodule malignancy classification. The annotations for the NLSTx dataset are also released with this paper on GitHub at <uri>https://github.com/benVZ/NLSTx</uri>.\",\"PeriodicalId\":33825,\"journal\":{\"name\":\"IEEE Open Journal of Engineering in Medicine and Biology\",\"volume\":\"6 \",\"pages\":\"296-304\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10843806\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Engineering in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10843806/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10843806/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:研究利用低秩自适应(Low-Rank Adaptation, LoRA)对自我监督学习(self-supervised learning, SSL)预训练的大视觉模型(large vision models, lvm)进行肺结节恶性分类的方法。受LoRA在自然语言处理领域成功的启发,我们假设这种自适应技术可以显著提高分类性能、参数效率和训练速度,用于肺图像癌症诊断的新应用。方法:利用两个综合的肺结节数据集NLSTx和LIDC,其中包括各种活检和放射科医生证实的肺部CT扫描,我们严格的实验设置表明,适应lora的模型明显优于传统的微调方法。结果:与最先进的模型相比,最佳的lora适应模型的ROC AUC增加了3%,使用的参数减少了89.9%,训练时间减少了36.5%。结论:将LoRA与域外预训练lvm相结合,为提高肺结节恶性分类性能提供了一条有希望的途径。NLSTx数据集的注释也随本文一起发布在GitHub上https://github.com/benVZ/NLSTx。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Rank Adaptation of Pre-Trained Large Vision Models for Improved Lung Nodule Malignancy Classification
Goal: This paper investigates using Low-Rank Adaptation (LoRA) to adapt large vision models (LVMs) pretrained with self-supervised learning (SSL) for lung nodule malignancy classification. Inspired by LoRA's success in the field of Natural Language Processing, we hypothesized that such an adaptation technique can significantly improve classification performance, parameter efficiency, and training speed for the novel application of lung image cancer diagnostic. Methods: Utilizing two comprehensive lung nodule datasets, NLSTx and LIDC, which together encompass a diverse array of biopsy- and radiologist-confirmed lung CT scans, our rigorous experimental setup demonstrates that LoRA-adapted models markedly surpass traditional fine-tuning methods. Results: The best LoRA-adapted model achieved a 3% increase in ROC AUC over the state-of-the-art model, utilized 89.9% fewer parameters, and reduced training times by 36.5%. Conclusions: Integrating LoRA with out-of-domain pretrained LVMs offers a promising avenue for enhancing performance of lung nodule malignancy classification. The annotations for the NLSTx dataset are also released with this paper on GitHub at https://github.com/benVZ/NLSTx.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.50
自引率
3.40%
发文量
20
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信