推进连贯电网划分:包含机器和深度学习的综述

IF 3.3 Q3 ENERGY & FUELS
Mohamed Massaoudi;Maymouna Ez Eddin;Ali Ghrayeb;Haitham Abu-Rub;Shady S. Refaat
{"title":"推进连贯电网划分:包含机器和深度学习的综述","authors":"Mohamed Massaoudi;Maymouna Ez Eddin;Ali Ghrayeb;Haitham Abu-Rub;Shady S. Refaat","doi":"10.1109/OAJPE.2025.3535709","DOIUrl":null,"url":null,"abstract":"With the escalating intricacy and expansion of the interconnected electrical grid, the likelihood of power system (PS) collapse has escalated dramatically. There is an increased emphasis on immunizing renewable-dominated power systems from large-scale cascading failures and cyberattacks through optimal power grid partitioning (PGP). By altering the network’s topology, partitioning aims to create areas within the PS that are not only robust but also have increased flexibility in generation and improved controllability over variable demand. This article provides an updated review of the cutting-edge machine learning and data-driven techniques used for PGP in networked PSs. To this end, an in-depth exploration of the basic principles of PGP and performance quantification is provided. The coherency adequacy and controlled islanding within the power network are comprehensively discussed. Subsequently, state-of-the-art research that envisions the use of clustering-based machine learning and deep learning-based solutions for PGP is presented. Finally, key research gaps and future directions for effective PGP are outlined. This paper provides PS researchers with a bird’s eye view of the current state of mainstream PGP implementations. Additionally, it assists stakeholders in selecting the most appropriate clustering algorithms for PGP applications.","PeriodicalId":56187,"journal":{"name":"IEEE Open Access Journal of Power and Energy","volume":"12 ","pages":"59-75"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10855832","citationCount":"0","resultStr":"{\"title\":\"Advancing Coherent Power Grid Partitioning: A Review Embracing Machine and Deep Learning\",\"authors\":\"Mohamed Massaoudi;Maymouna Ez Eddin;Ali Ghrayeb;Haitham Abu-Rub;Shady S. Refaat\",\"doi\":\"10.1109/OAJPE.2025.3535709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the escalating intricacy and expansion of the interconnected electrical grid, the likelihood of power system (PS) collapse has escalated dramatically. There is an increased emphasis on immunizing renewable-dominated power systems from large-scale cascading failures and cyberattacks through optimal power grid partitioning (PGP). By altering the network’s topology, partitioning aims to create areas within the PS that are not only robust but also have increased flexibility in generation and improved controllability over variable demand. This article provides an updated review of the cutting-edge machine learning and data-driven techniques used for PGP in networked PSs. To this end, an in-depth exploration of the basic principles of PGP and performance quantification is provided. The coherency adequacy and controlled islanding within the power network are comprehensively discussed. Subsequently, state-of-the-art research that envisions the use of clustering-based machine learning and deep learning-based solutions for PGP is presented. Finally, key research gaps and future directions for effective PGP are outlined. This paper provides PS researchers with a bird’s eye view of the current state of mainstream PGP implementations. Additionally, it assists stakeholders in selecting the most appropriate clustering algorithms for PGP applications.\",\"PeriodicalId\":56187,\"journal\":{\"name\":\"IEEE Open Access Journal of Power and Energy\",\"volume\":\"12 \",\"pages\":\"59-75\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10855832\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Access Journal of Power and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10855832/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Access Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10855832/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

随着互联电网的复杂性和规模的不断扩大,电力系统崩溃的可能性急剧上升。人们越来越重视通过优化电网划分(PGP)使可再生能源主导的电力系统免受大规模级联故障和网络攻击的影响。通过改变网络的拓扑结构,分区的目的是在PS中创建区域,这些区域不仅具有鲁棒性,而且还增加了生成的灵活性,并改善了对可变需求的可控性。这篇文章提供了一个最新的评论,尖端的机器学习和数据驱动技术用于PGP在网络化的ps。为此,对PGP的基本原理和绩效量化进行了深入的探讨。全面讨论了电网内的一致性充分性和可控孤岛问题。随后,提出了基于聚类的机器学习和基于深度学习的PGP解决方案的最新研究。最后,总结了有效PGP的主要研究空白和未来发展方向。本文为PS研究人员提供了当前主流PGP实现状态的鸟瞰图。此外,它还帮助涉众为PGP应用程序选择最合适的聚类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing Coherent Power Grid Partitioning: A Review Embracing Machine and Deep Learning
With the escalating intricacy and expansion of the interconnected electrical grid, the likelihood of power system (PS) collapse has escalated dramatically. There is an increased emphasis on immunizing renewable-dominated power systems from large-scale cascading failures and cyberattacks through optimal power grid partitioning (PGP). By altering the network’s topology, partitioning aims to create areas within the PS that are not only robust but also have increased flexibility in generation and improved controllability over variable demand. This article provides an updated review of the cutting-edge machine learning and data-driven techniques used for PGP in networked PSs. To this end, an in-depth exploration of the basic principles of PGP and performance quantification is provided. The coherency adequacy and controlled islanding within the power network are comprehensively discussed. Subsequently, state-of-the-art research that envisions the use of clustering-based machine learning and deep learning-based solutions for PGP is presented. Finally, key research gaps and future directions for effective PGP are outlined. This paper provides PS researchers with a bird’s eye view of the current state of mainstream PGP implementations. Additionally, it assists stakeholders in selecting the most appropriate clustering algorithms for PGP applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
5.30%
发文量
45
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信