基于模糊推理系统的卷积网络在自闭症障碍图形模型检测中的应用

S. Rajaprakash , C. Bagath Basha , C. Sunitha Ram , I. Ameethbasha , V. Subapriya , R. Sofia
{"title":"基于模糊推理系统的卷积网络在自闭症障碍图形模型检测中的应用","authors":"S. Rajaprakash ,&nbsp;C. Bagath Basha ,&nbsp;C. Sunitha Ram ,&nbsp;I. Ameethbasha ,&nbsp;V. Subapriya ,&nbsp;R. Sofia","doi":"10.1016/j.ibmed.2025.100213","DOIUrl":null,"url":null,"abstract":"<div><div>Autism spectrum disorder (ASD) study faces several challenges, including variations in brain connectivity patterns, small sample sizes, and data heterogeneity detection by magnetic resonance imaging (MRI). These issues make it challenging to identify consistent imaging modalities. Researchers have explored improved analysis techniques to solve the above problem via multimodal imaging and graph-based methods. Therefore, it is better to understand ASD neurology. The current techniques focus mainly on pairwise comparisons between individuals and often overlook features and individual characteristics. To overcome these limitations, in the proposed novel method, a multiscale enhanced graph with a convolutional network is used for ASD detection.</div><div>This work integrates non-imaging phenotypic data (from brain imaging data) with functional connectivity data (from Functional magnetic resonance images). In this approach, the population graph represents all individuals as vertices. The phenotypic data were used to calculate the weight between vertices in the graph using the fuzzy inference system. Fuzzy if-then rules, is used to determine the similarity between the phenotypic data. Each vertice connects feature vectors derived from the image data. The vertices and weights of each edge are used to incorporate phenotypic information. A random walk with a fuzzy MSE-GCN framework employs multiple parallel GCN layer embeddings. The outputs from these layers are joined in a completely linked layer to detect ASD efficiently. We assessed the performance of this background by the ABIDE data set and utilized recursive feature elimination and a multilayer perceptron for feature selection. This method achieved an accuracy rate of 87 % better than the current study.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100213"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using convolutional network in graphical model detection of autism disorders with fuzzy inference systems\",\"authors\":\"S. Rajaprakash ,&nbsp;C. Bagath Basha ,&nbsp;C. Sunitha Ram ,&nbsp;I. Ameethbasha ,&nbsp;V. Subapriya ,&nbsp;R. Sofia\",\"doi\":\"10.1016/j.ibmed.2025.100213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Autism spectrum disorder (ASD) study faces several challenges, including variations in brain connectivity patterns, small sample sizes, and data heterogeneity detection by magnetic resonance imaging (MRI). These issues make it challenging to identify consistent imaging modalities. Researchers have explored improved analysis techniques to solve the above problem via multimodal imaging and graph-based methods. Therefore, it is better to understand ASD neurology. The current techniques focus mainly on pairwise comparisons between individuals and often overlook features and individual characteristics. To overcome these limitations, in the proposed novel method, a multiscale enhanced graph with a convolutional network is used for ASD detection.</div><div>This work integrates non-imaging phenotypic data (from brain imaging data) with functional connectivity data (from Functional magnetic resonance images). In this approach, the population graph represents all individuals as vertices. The phenotypic data were used to calculate the weight between vertices in the graph using the fuzzy inference system. Fuzzy if-then rules, is used to determine the similarity between the phenotypic data. Each vertice connects feature vectors derived from the image data. The vertices and weights of each edge are used to incorporate phenotypic information. A random walk with a fuzzy MSE-GCN framework employs multiple parallel GCN layer embeddings. The outputs from these layers are joined in a completely linked layer to detect ASD efficiently. We assessed the performance of this background by the ABIDE data set and utilized recursive feature elimination and a multilayer perceptron for feature selection. This method achieved an accuracy rate of 87 % better than the current study.</div></div>\",\"PeriodicalId\":73399,\"journal\":{\"name\":\"Intelligence-based medicine\",\"volume\":\"11 \",\"pages\":\"Article 100213\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence-based medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266652122500016X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266652122500016X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自闭症谱系障碍(ASD)的研究面临着一些挑战,包括脑连接模式的差异、小样本量和磁共振成像(MRI)数据异质性检测。这些问题使得确定一致的成像模式具有挑战性。研究人员已经探索了改进的分析技术,通过多模态成像和基于图的方法来解决上述问题。因此,更好地了解ASD神经学。目前的技术主要集中在个体之间的两两比较,往往忽略了特征和个体特征。为了克服这些局限性,本文提出了一种基于卷积网络的多尺度增强图检测ASD的新方法。这项工作整合了非成像表型数据(来自脑成像数据)和功能连接数据(来自功能磁共振图像)。在这种方法中,总体图将所有个体表示为顶点。利用表型数据,利用模糊推理系统计算图中顶点之间的权重。模糊if-then规则用于确定表型数据之间的相似性。每个顶点连接来自图像数据的特征向量。每个边的顶点和权值被用来合并表型信息。模糊MSE-GCN框架的随机漫步采用多个并行GCN层嵌入。这些层的输出连接在一个完全链接的层中,以有效地检测ASD。我们通过ABIDE数据集评估了该背景的性能,并利用递归特征消除和多层感知器进行特征选择。该方法的准确率比目前的研究提高了87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using convolutional network in graphical model detection of autism disorders with fuzzy inference systems
Autism spectrum disorder (ASD) study faces several challenges, including variations in brain connectivity patterns, small sample sizes, and data heterogeneity detection by magnetic resonance imaging (MRI). These issues make it challenging to identify consistent imaging modalities. Researchers have explored improved analysis techniques to solve the above problem via multimodal imaging and graph-based methods. Therefore, it is better to understand ASD neurology. The current techniques focus mainly on pairwise comparisons between individuals and often overlook features and individual characteristics. To overcome these limitations, in the proposed novel method, a multiscale enhanced graph with a convolutional network is used for ASD detection.
This work integrates non-imaging phenotypic data (from brain imaging data) with functional connectivity data (from Functional magnetic resonance images). In this approach, the population graph represents all individuals as vertices. The phenotypic data were used to calculate the weight between vertices in the graph using the fuzzy inference system. Fuzzy if-then rules, is used to determine the similarity between the phenotypic data. Each vertice connects feature vectors derived from the image data. The vertices and weights of each edge are used to incorporate phenotypic information. A random walk with a fuzzy MSE-GCN framework employs multiple parallel GCN layer embeddings. The outputs from these layers are joined in a completely linked layer to detect ASD efficiently. We assessed the performance of this background by the ABIDE data set and utilized recursive feature elimination and a multilayer perceptron for feature selection. This method achieved an accuracy rate of 87 % better than the current study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信