基于自然语言处理的聚对苯二甲酸乙二醇酯废弃物回收技术的进化研究

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Avan Kumar , Harshitha Chandra Jami , Bhavik R. Bakshi , Manojkumar Ramteke , Hariprasad Kodamana
{"title":"基于自然语言处理的聚对苯二甲酸乙二醇酯废弃物回收技术的进化研究","authors":"Avan Kumar ,&nbsp;Harshitha Chandra Jami ,&nbsp;Bhavik R. Bakshi ,&nbsp;Manojkumar Ramteke ,&nbsp;Hariprasad Kodamana","doi":"10.1016/j.compchemeng.2025.109011","DOIUrl":null,"url":null,"abstract":"<div><div>Polyethylene terephthalate (PET) is valued for its durability, tensile strength, low moisture absorption, and cost-effectiveness. However, its non-biodegradability poses an environmental threat, and plastic recycling is the sole remedy. This study proposes an NLP framework for concisely extracting and summarizing key information on recycling technologies and alternatives from relevant scientific literature. This NLP framework comprises three approaches: time-series knowledge graphs, dynamic transformer-based topic modeling, and estimating popularity indices for technologies. The framework aims to streamline the extraction of qualitative and quantitative insights for sustainable and economical PET waste recycling pathways. Key findings of the study show that there is a 406% rise in pyrolysis technology use, a 278% increase in chemical conversion, and a 1353% surge in waste PET utilization for electronic device-making. It is worth noting that some of the identified recycling pathways corroborate well with the actual implementation in the industries.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"195 ","pages":"Article 109011"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An evolutionary study on technologies for polyethylene terephthalate waste recycling using natural language processing\",\"authors\":\"Avan Kumar ,&nbsp;Harshitha Chandra Jami ,&nbsp;Bhavik R. Bakshi ,&nbsp;Manojkumar Ramteke ,&nbsp;Hariprasad Kodamana\",\"doi\":\"10.1016/j.compchemeng.2025.109011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polyethylene terephthalate (PET) is valued for its durability, tensile strength, low moisture absorption, and cost-effectiveness. However, its non-biodegradability poses an environmental threat, and plastic recycling is the sole remedy. This study proposes an NLP framework for concisely extracting and summarizing key information on recycling technologies and alternatives from relevant scientific literature. This NLP framework comprises three approaches: time-series knowledge graphs, dynamic transformer-based topic modeling, and estimating popularity indices for technologies. The framework aims to streamline the extraction of qualitative and quantitative insights for sustainable and economical PET waste recycling pathways. Key findings of the study show that there is a 406% rise in pyrolysis technology use, a 278% increase in chemical conversion, and a 1353% surge in waste PET utilization for electronic device-making. It is worth noting that some of the identified recycling pathways corroborate well with the actual implementation in the industries.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"195 \",\"pages\":\"Article 109011\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135425000158\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425000158","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

聚对苯二甲酸乙二醇酯(PET)因其耐用性,抗拉强度,低吸湿性和成本效益而受到重视。然而,它的不可生物降解性对环境构成了威胁,塑料回收是唯一的补救办法。本研究提出了一个NLP框架,用于从相关科学文献中简洁地提取和总结回收技术和替代方案的关键信息。该NLP框架包括三种方法:时间序列知识图、基于动态转换器的主题建模和估计技术的流行指数。该框架旨在简化对可持续和经济的PET废物回收途径的定性和定量见解的提取。该研究的主要发现表明,热解技术的使用增加了406%,化学转化增加了278%,废弃PET用于电子设备制造的利用率增加了1353%。值得注意的是,一些确定的回收途径与工业的实际实施情况相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An evolutionary study on technologies for polyethylene terephthalate waste recycling using natural language processing
Polyethylene terephthalate (PET) is valued for its durability, tensile strength, low moisture absorption, and cost-effectiveness. However, its non-biodegradability poses an environmental threat, and plastic recycling is the sole remedy. This study proposes an NLP framework for concisely extracting and summarizing key information on recycling technologies and alternatives from relevant scientific literature. This NLP framework comprises three approaches: time-series knowledge graphs, dynamic transformer-based topic modeling, and estimating popularity indices for technologies. The framework aims to streamline the extraction of qualitative and quantitative insights for sustainable and economical PET waste recycling pathways. Key findings of the study show that there is a 406% rise in pyrolysis technology use, a 278% increase in chemical conversion, and a 1353% surge in waste PET utilization for electronic device-making. It is worth noting that some of the identified recycling pathways corroborate well with the actual implementation in the industries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信