Daniel Ovalle , David A. Liñán , Albert Lee , Jorge M. Gómez , Luis Ricardez-Sandoval , Ignacio E. Grossmann , David E. Bernal Neira
{"title":"基于逻辑的离散最陡下降:过程综合广义析取规划的一种求解方法","authors":"Daniel Ovalle , David A. Liñán , Albert Lee , Jorge M. Gómez , Luis Ricardez-Sandoval , Ignacio E. Grossmann , David E. Bernal Neira","doi":"10.1016/j.compchemeng.2024.108993","DOIUrl":null,"url":null,"abstract":"<div><div>Optimization of chemical processes is challenging due to nonlinearities arising from chemical principles and discrete design decisions. The optimal synthesis and design of chemical processes can be posed as a Generalized Disjunctive Programming (GDP) problem. While reformulating GDP problems as Mixed-Integer Nonlinear Programming (MINLP) problems is common, specialized algorithms for GDP remain scarce. This study introduces the Logic-Based Discrete-Steepest Descent Algorithm (LD-SDA) as a solution method for GDP problems involving ordered Boolean variables. LD-SDA transforms these variables into external integer decisions and uses a two-level decomposition: the upper-level sets external configurations, and the lower-level solves the remaining variables, efficiently exploiting the GDP structure. In the case studies presented in this work, including batch processing, reactor superstructures, and distillation columns, LD-SDA consistently outperforms conventional GDP and MINLP solvers, especially as the problem size grows. LD-SDA also proves superior when solving challenging problems where other solvers encounter difficulties finding optimal solutions.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"195 ","pages":"Article 108993"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Logic-Based Discrete-Steepest Descent: A solution method for process synthesis Generalized Disjunctive Programs\",\"authors\":\"Daniel Ovalle , David A. Liñán , Albert Lee , Jorge M. Gómez , Luis Ricardez-Sandoval , Ignacio E. Grossmann , David E. Bernal Neira\",\"doi\":\"10.1016/j.compchemeng.2024.108993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Optimization of chemical processes is challenging due to nonlinearities arising from chemical principles and discrete design decisions. The optimal synthesis and design of chemical processes can be posed as a Generalized Disjunctive Programming (GDP) problem. While reformulating GDP problems as Mixed-Integer Nonlinear Programming (MINLP) problems is common, specialized algorithms for GDP remain scarce. This study introduces the Logic-Based Discrete-Steepest Descent Algorithm (LD-SDA) as a solution method for GDP problems involving ordered Boolean variables. LD-SDA transforms these variables into external integer decisions and uses a two-level decomposition: the upper-level sets external configurations, and the lower-level solves the remaining variables, efficiently exploiting the GDP structure. In the case studies presented in this work, including batch processing, reactor superstructures, and distillation columns, LD-SDA consistently outperforms conventional GDP and MINLP solvers, especially as the problem size grows. LD-SDA also proves superior when solving challenging problems where other solvers encounter difficulties finding optimal solutions.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"195 \",\"pages\":\"Article 108993\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424004113\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424004113","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Logic-Based Discrete-Steepest Descent: A solution method for process synthesis Generalized Disjunctive Programs
Optimization of chemical processes is challenging due to nonlinearities arising from chemical principles and discrete design decisions. The optimal synthesis and design of chemical processes can be posed as a Generalized Disjunctive Programming (GDP) problem. While reformulating GDP problems as Mixed-Integer Nonlinear Programming (MINLP) problems is common, specialized algorithms for GDP remain scarce. This study introduces the Logic-Based Discrete-Steepest Descent Algorithm (LD-SDA) as a solution method for GDP problems involving ordered Boolean variables. LD-SDA transforms these variables into external integer decisions and uses a two-level decomposition: the upper-level sets external configurations, and the lower-level solves the remaining variables, efficiently exploiting the GDP structure. In the case studies presented in this work, including batch processing, reactor superstructures, and distillation columns, LD-SDA consistently outperforms conventional GDP and MINLP solvers, especially as the problem size grows. LD-SDA also proves superior when solving challenging problems where other solvers encounter difficulties finding optimal solutions.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.