基于逻辑的离散最陡下降:过程综合广义析取规划的一种求解方法

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Daniel Ovalle , David A. Liñán , Albert Lee , Jorge M. Gómez , Luis Ricardez-Sandoval , Ignacio E. Grossmann , David E. Bernal Neira
{"title":"基于逻辑的离散最陡下降:过程综合广义析取规划的一种求解方法","authors":"Daniel Ovalle ,&nbsp;David A. Liñán ,&nbsp;Albert Lee ,&nbsp;Jorge M. Gómez ,&nbsp;Luis Ricardez-Sandoval ,&nbsp;Ignacio E. Grossmann ,&nbsp;David E. Bernal Neira","doi":"10.1016/j.compchemeng.2024.108993","DOIUrl":null,"url":null,"abstract":"<div><div>Optimization of chemical processes is challenging due to nonlinearities arising from chemical principles and discrete design decisions. The optimal synthesis and design of chemical processes can be posed as a Generalized Disjunctive Programming (GDP) problem. While reformulating GDP problems as Mixed-Integer Nonlinear Programming (MINLP) problems is common, specialized algorithms for GDP remain scarce. This study introduces the Logic-Based Discrete-Steepest Descent Algorithm (LD-SDA) as a solution method for GDP problems involving ordered Boolean variables. LD-SDA transforms these variables into external integer decisions and uses a two-level decomposition: the upper-level sets external configurations, and the lower-level solves the remaining variables, efficiently exploiting the GDP structure. In the case studies presented in this work, including batch processing, reactor superstructures, and distillation columns, LD-SDA consistently outperforms conventional GDP and MINLP solvers, especially as the problem size grows. LD-SDA also proves superior when solving challenging problems where other solvers encounter difficulties finding optimal solutions.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"195 ","pages":"Article 108993"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Logic-Based Discrete-Steepest Descent: A solution method for process synthesis Generalized Disjunctive Programs\",\"authors\":\"Daniel Ovalle ,&nbsp;David A. Liñán ,&nbsp;Albert Lee ,&nbsp;Jorge M. Gómez ,&nbsp;Luis Ricardez-Sandoval ,&nbsp;Ignacio E. Grossmann ,&nbsp;David E. Bernal Neira\",\"doi\":\"10.1016/j.compchemeng.2024.108993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Optimization of chemical processes is challenging due to nonlinearities arising from chemical principles and discrete design decisions. The optimal synthesis and design of chemical processes can be posed as a Generalized Disjunctive Programming (GDP) problem. While reformulating GDP problems as Mixed-Integer Nonlinear Programming (MINLP) problems is common, specialized algorithms for GDP remain scarce. This study introduces the Logic-Based Discrete-Steepest Descent Algorithm (LD-SDA) as a solution method for GDP problems involving ordered Boolean variables. LD-SDA transforms these variables into external integer decisions and uses a two-level decomposition: the upper-level sets external configurations, and the lower-level solves the remaining variables, efficiently exploiting the GDP structure. In the case studies presented in this work, including batch processing, reactor superstructures, and distillation columns, LD-SDA consistently outperforms conventional GDP and MINLP solvers, especially as the problem size grows. LD-SDA also proves superior when solving challenging problems where other solvers encounter difficulties finding optimal solutions.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"195 \",\"pages\":\"Article 108993\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424004113\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424004113","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

由于化学原理和离散设计决策引起的非线性,化学过程的优化具有挑战性。化工过程的优化合成与设计可归结为广义析取规划问题。虽然将GDP问题重新表述为混合整数非线性规划(MINLP)问题是常见的,但专门的GDP算法仍然很少。本文介绍了基于逻辑的离散最速下降算法(LD-SDA)作为一种涉及有序布尔变量的GDP问题的求解方法。LD-SDA将这些变量转换为外部整数决策,并采用两层分解:上层设置外部配置,下层求解剩余变量,有效地利用了GDP结构。在本工作中提出的案例研究中,包括批处理、反应器上层结构和精馏塔,LD-SDA始终优于传统的GDP和MINLP解决方案,特别是当问题规模增长时。LD-SDA在解决其他求解者难以找到最优解的挑战性问题时也证明了其优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Logic-Based Discrete-Steepest Descent: A solution method for process synthesis Generalized Disjunctive Programs
Optimization of chemical processes is challenging due to nonlinearities arising from chemical principles and discrete design decisions. The optimal synthesis and design of chemical processes can be posed as a Generalized Disjunctive Programming (GDP) problem. While reformulating GDP problems as Mixed-Integer Nonlinear Programming (MINLP) problems is common, specialized algorithms for GDP remain scarce. This study introduces the Logic-Based Discrete-Steepest Descent Algorithm (LD-SDA) as a solution method for GDP problems involving ordered Boolean variables. LD-SDA transforms these variables into external integer decisions and uses a two-level decomposition: the upper-level sets external configurations, and the lower-level solves the remaining variables, efficiently exploiting the GDP structure. In the case studies presented in this work, including batch processing, reactor superstructures, and distillation columns, LD-SDA consistently outperforms conventional GDP and MINLP solvers, especially as the problem size grows. LD-SDA also proves superior when solving challenging problems where other solvers encounter difficulties finding optimal solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信