Shang Tian , Anmeng Sha , Yingzhong Luo , Yutian Ke , Robert Spencer , Xie Hu , Munan Ning , Yi Zhao , Rui Deng , Yang Gao , Yong Liu , Dongfeng Li
{"title":"基于卫星数据和机器学习的河流有机碳检索新框架","authors":"Shang Tian , Anmeng Sha , Yingzhong Luo , Yutian Ke , Robert Spencer , Xie Hu , Munan Ning , Yi Zhao , Rui Deng , Yang Gao , Yong Liu , Dongfeng Li","doi":"10.1016/j.isprsjprs.2025.01.028","DOIUrl":null,"url":null,"abstract":"<div><div>Rivers transport large amounts of carbon, serving as a critical link between terrestrial, coastal, and atmospheric biogeochemical cycles. However, our observations and understanding of long-term river carbon dynamics in large-scale remain limited. Integrating machine learning with remote sensing offers an effective approach for quantifying organic carbon (OC) from space. Here, we develop the Aquatic-Organic Carbon (Aqua-OC), a dynamic machine learning retrieval framework designed to estimate reach-scale river OC using nearly half a century of analysis-ready Landsat archives. We first integrate a globally representative river OC dataset, comprising 299,330 measurements of dissolved organic carbon (DOC) and 101,878 measurements of particulate organic carbon (POC). This dataset is then used to evaluate the performance of four machine learning methods, i.e., random forest (RF), extreme gradient boosting (XGBoost), Support vector regression (SVR), and deep neural network (DNN), using an optical water type classification strategy. We further leverage multimodal input features to enhance the Aqua-OC framework and OC retrieval accuracy by considering various factors related to OC sources and environmental conditions. The results demonstrate that the Aqua-OC can effectively estimate DOC (R<sup>2</sup> = 0.68, RMSE = 2.88 mg/L, Bias = 2.63 %, Error = 12.52 %) and POC (R<sup>2</sup> = 0.76, RMSE = 1.76 mg/L, Bias = 6.31 %, Error = 21.36 %). Additionally, the Mississippi River Basin case study demonstrates Aqua-OC’s capability to map nearly four decades of reach-scale OC changes at a basin scale. This study provides a generalized method for satellite-based river OC retrieval at fine spatial and long-term temporal scales, thus offering an effective tool to quantify the rivers’ role in the global carbon cycle.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"221 ","pages":"Pages 109-123"},"PeriodicalIF":10.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel framework for river organic carbon retrieval through satellite data and machine learning\",\"authors\":\"Shang Tian , Anmeng Sha , Yingzhong Luo , Yutian Ke , Robert Spencer , Xie Hu , Munan Ning , Yi Zhao , Rui Deng , Yang Gao , Yong Liu , Dongfeng Li\",\"doi\":\"10.1016/j.isprsjprs.2025.01.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rivers transport large amounts of carbon, serving as a critical link between terrestrial, coastal, and atmospheric biogeochemical cycles. However, our observations and understanding of long-term river carbon dynamics in large-scale remain limited. Integrating machine learning with remote sensing offers an effective approach for quantifying organic carbon (OC) from space. Here, we develop the Aquatic-Organic Carbon (Aqua-OC), a dynamic machine learning retrieval framework designed to estimate reach-scale river OC using nearly half a century of analysis-ready Landsat archives. We first integrate a globally representative river OC dataset, comprising 299,330 measurements of dissolved organic carbon (DOC) and 101,878 measurements of particulate organic carbon (POC). This dataset is then used to evaluate the performance of four machine learning methods, i.e., random forest (RF), extreme gradient boosting (XGBoost), Support vector regression (SVR), and deep neural network (DNN), using an optical water type classification strategy. We further leverage multimodal input features to enhance the Aqua-OC framework and OC retrieval accuracy by considering various factors related to OC sources and environmental conditions. The results demonstrate that the Aqua-OC can effectively estimate DOC (R<sup>2</sup> = 0.68, RMSE = 2.88 mg/L, Bias = 2.63 %, Error = 12.52 %) and POC (R<sup>2</sup> = 0.76, RMSE = 1.76 mg/L, Bias = 6.31 %, Error = 21.36 %). Additionally, the Mississippi River Basin case study demonstrates Aqua-OC’s capability to map nearly four decades of reach-scale OC changes at a basin scale. This study provides a generalized method for satellite-based river OC retrieval at fine spatial and long-term temporal scales, thus offering an effective tool to quantify the rivers’ role in the global carbon cycle.</div></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":\"221 \",\"pages\":\"Pages 109-123\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271625000334\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271625000334","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
A novel framework for river organic carbon retrieval through satellite data and machine learning
Rivers transport large amounts of carbon, serving as a critical link between terrestrial, coastal, and atmospheric biogeochemical cycles. However, our observations and understanding of long-term river carbon dynamics in large-scale remain limited. Integrating machine learning with remote sensing offers an effective approach for quantifying organic carbon (OC) from space. Here, we develop the Aquatic-Organic Carbon (Aqua-OC), a dynamic machine learning retrieval framework designed to estimate reach-scale river OC using nearly half a century of analysis-ready Landsat archives. We first integrate a globally representative river OC dataset, comprising 299,330 measurements of dissolved organic carbon (DOC) and 101,878 measurements of particulate organic carbon (POC). This dataset is then used to evaluate the performance of four machine learning methods, i.e., random forest (RF), extreme gradient boosting (XGBoost), Support vector regression (SVR), and deep neural network (DNN), using an optical water type classification strategy. We further leverage multimodal input features to enhance the Aqua-OC framework and OC retrieval accuracy by considering various factors related to OC sources and environmental conditions. The results demonstrate that the Aqua-OC can effectively estimate DOC (R2 = 0.68, RMSE = 2.88 mg/L, Bias = 2.63 %, Error = 12.52 %) and POC (R2 = 0.76, RMSE = 1.76 mg/L, Bias = 6.31 %, Error = 21.36 %). Additionally, the Mississippi River Basin case study demonstrates Aqua-OC’s capability to map nearly four decades of reach-scale OC changes at a basin scale. This study provides a generalized method for satellite-based river OC retrieval at fine spatial and long-term temporal scales, thus offering an effective tool to quantify the rivers’ role in the global carbon cycle.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.