对称非负矩阵分解应用于图形群体检测和法医图像分析

IF 2.7 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Gaël Marec , Nédra Mellouli
{"title":"对称非负矩阵分解应用于图形群体检测和法医图像分析","authors":"Gaël Marec ,&nbsp;Nédra Mellouli","doi":"10.1016/j.datak.2025.102411","DOIUrl":null,"url":null,"abstract":"<div><div>With the proliferation of data, particularly on social networks, the accuracy of the information becomes uncertain. In this context, a major challenge lies in detecting image manipulations, where alterations are made to deceive observers. Aligning with the anomaly detection issue, recent methods approach the detection of image transformations as a community detection problem within graphs associated with the images. In this study, we propose using a community clustering method based on non-negative symmetric matrix factorization. By examining several experiments detecting alterations in manipulated images, we assess the method’s robustness and discuss potential enhancements. We also present a process for automatically generating visually and semantically coherent forged images. Additionally, we provide a web application to demonstrate this process.</div></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"157 ","pages":"Article 102411"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetric non negative matrices factorization applied to the detection of communities in graphs and forensic image analysis\",\"authors\":\"Gaël Marec ,&nbsp;Nédra Mellouli\",\"doi\":\"10.1016/j.datak.2025.102411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the proliferation of data, particularly on social networks, the accuracy of the information becomes uncertain. In this context, a major challenge lies in detecting image manipulations, where alterations are made to deceive observers. Aligning with the anomaly detection issue, recent methods approach the detection of image transformations as a community detection problem within graphs associated with the images. In this study, we propose using a community clustering method based on non-negative symmetric matrix factorization. By examining several experiments detecting alterations in manipulated images, we assess the method’s robustness and discuss potential enhancements. We also present a process for automatically generating visually and semantically coherent forged images. Additionally, we provide a web application to demonstrate this process.</div></div>\",\"PeriodicalId\":55184,\"journal\":{\"name\":\"Data & Knowledge Engineering\",\"volume\":\"157 \",\"pages\":\"Article 102411\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data & Knowledge Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169023X25000060\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X25000060","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着数据的激增,尤其是在社交网络上,信息的准确性变得不确定。在这种情况下,一个主要的挑战在于检测图像操纵,其中的改变是为了欺骗观察者。与异常检测问题一致,最近的方法将图像变换检测作为与图像相关的图中的社区检测问题。在本研究中,我们提出了一种基于非负对称矩阵分解的群体聚类方法。通过检查几个实验检测在操纵图像的变化,我们评估该方法的鲁棒性和讨论潜在的增强。我们还提出了一种自动生成视觉和语义上连贯的伪造图像的过程。此外,我们提供了一个web应用程序来演示这个过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetric non negative matrices factorization applied to the detection of communities in graphs and forensic image analysis
With the proliferation of data, particularly on social networks, the accuracy of the information becomes uncertain. In this context, a major challenge lies in detecting image manipulations, where alterations are made to deceive observers. Aligning with the anomaly detection issue, recent methods approach the detection of image transformations as a community detection problem within graphs associated with the images. In this study, we propose using a community clustering method based on non-negative symmetric matrix factorization. By examining several experiments detecting alterations in manipulated images, we assess the method’s robustness and discuss potential enhancements. We also present a process for automatically generating visually and semantically coherent forged images. Additionally, we provide a web application to demonstrate this process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data & Knowledge Engineering
Data & Knowledge Engineering 工程技术-计算机:人工智能
CiteScore
5.00
自引率
0.00%
发文量
66
审稿时长
6 months
期刊介绍: Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信