{"title":"使用光学卫星图像和人工智能的自动浮动碎片监测:最近的趋势、挑战和机遇","authors":"Kamakhya Bansal, Ashish Kumar Tripathi","doi":"10.1016/j.rsase.2025.101475","DOIUrl":null,"url":null,"abstract":"<div><div>Unwanted and harmful floating debris creates aesthetic, economic, social, and ecological harm. The optical satellites provide frequent global coverage across multiple spectral bands. Utilizing this abundant multi-banded optical satellite data for floating debris monitoring, many artificial intelligence-based approaches were proposed. These approaches face various challenges due to the multidimensional nature of the earth observation data visualized on a reduced scale. This work identifies various stages of AI deployment for floating debris identification, classification, segmentation, density estimation, and/or temporal study. The challenges during each stage along with some potential solutions applied in this field or elsewhere have been identified. Since AI approaches are data-driven, the limitation of labeled data with real-time diversity of shape, color, texture, size, and composition of floating debris placed against different backgrounds is most acute. The work proposes the utilization of some recent AI-based systems, like continuous learning, transfer learning, attention-based transformers, explainable AI, etc., to resolve these identified challenges. The work calls for further research into the application of pre-trained models, semi-supervised learning, and multi-modal data fusion for overcoming the labeled data deficiency. Additionally, harmful debris density estimation and factors leading to a change in the estimated density need further research.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"37 ","pages":"Article 101475"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated floating debris monitoring using optical satellite imagery and artificial intelligence: Recent trends, challenges and opportunities\",\"authors\":\"Kamakhya Bansal, Ashish Kumar Tripathi\",\"doi\":\"10.1016/j.rsase.2025.101475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Unwanted and harmful floating debris creates aesthetic, economic, social, and ecological harm. The optical satellites provide frequent global coverage across multiple spectral bands. Utilizing this abundant multi-banded optical satellite data for floating debris monitoring, many artificial intelligence-based approaches were proposed. These approaches face various challenges due to the multidimensional nature of the earth observation data visualized on a reduced scale. This work identifies various stages of AI deployment for floating debris identification, classification, segmentation, density estimation, and/or temporal study. The challenges during each stage along with some potential solutions applied in this field or elsewhere have been identified. Since AI approaches are data-driven, the limitation of labeled data with real-time diversity of shape, color, texture, size, and composition of floating debris placed against different backgrounds is most acute. The work proposes the utilization of some recent AI-based systems, like continuous learning, transfer learning, attention-based transformers, explainable AI, etc., to resolve these identified challenges. The work calls for further research into the application of pre-trained models, semi-supervised learning, and multi-modal data fusion for overcoming the labeled data deficiency. Additionally, harmful debris density estimation and factors leading to a change in the estimated density need further research.</div></div>\",\"PeriodicalId\":53227,\"journal\":{\"name\":\"Remote Sensing Applications-Society and Environment\",\"volume\":\"37 \",\"pages\":\"Article 101475\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing Applications-Society and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S235293852500028X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235293852500028X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Automated floating debris monitoring using optical satellite imagery and artificial intelligence: Recent trends, challenges and opportunities
Unwanted and harmful floating debris creates aesthetic, economic, social, and ecological harm. The optical satellites provide frequent global coverage across multiple spectral bands. Utilizing this abundant multi-banded optical satellite data for floating debris monitoring, many artificial intelligence-based approaches were proposed. These approaches face various challenges due to the multidimensional nature of the earth observation data visualized on a reduced scale. This work identifies various stages of AI deployment for floating debris identification, classification, segmentation, density estimation, and/or temporal study. The challenges during each stage along with some potential solutions applied in this field or elsewhere have been identified. Since AI approaches are data-driven, the limitation of labeled data with real-time diversity of shape, color, texture, size, and composition of floating debris placed against different backgrounds is most acute. The work proposes the utilization of some recent AI-based systems, like continuous learning, transfer learning, attention-based transformers, explainable AI, etc., to resolve these identified challenges. The work calls for further research into the application of pre-trained models, semi-supervised learning, and multi-modal data fusion for overcoming the labeled data deficiency. Additionally, harmful debris density estimation and factors leading to a change in the estimated density need further research.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems