与厄米特多项式相关的李代数表示和杂化族

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Subuhi Khan, Mahammad Lal Mia, Mahvish Ali
{"title":"与厄米特多项式相关的李代数表示和杂化族","authors":"Subuhi Khan,&nbsp;Mahammad Lal Mia,&nbsp;Mahvish Ali","doi":"10.1016/S0034-4877(24)00083-1","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, the Bessel and Tricomi functions are combined with Appell polynomials to introduce the families of Appell–Bessel and Appell–Tricomi functions. The 2-variable 2-parameter Hermite–Bessel and Hermite–Tricomi functions are considered as members of these families, and framed within the representation of the Lie algebra T3. Consequently, the implicit summation formulae for these functions are derived. Certain examples are also considered. The article concludes with the derivation of a relation involving the 2-variable 2-parameter Hermite–Tricomi functions by following the Weisner's approach.</div></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":"94 3","pages":"Pages 335-352"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lie algebra representation and hybrid families related to Hermite polynomials\",\"authors\":\"Subuhi Khan,&nbsp;Mahammad Lal Mia,&nbsp;Mahvish Ali\",\"doi\":\"10.1016/S0034-4877(24)00083-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, the Bessel and Tricomi functions are combined with Appell polynomials to introduce the families of Appell–Bessel and Appell–Tricomi functions. The 2-variable 2-parameter Hermite–Bessel and Hermite–Tricomi functions are considered as members of these families, and framed within the representation of the Lie algebra T3. Consequently, the implicit summation formulae for these functions are derived. Certain examples are also considered. The article concludes with the derivation of a relation involving the 2-variable 2-parameter Hermite–Tricomi functions by following the Weisner's approach.</div></div>\",\"PeriodicalId\":49630,\"journal\":{\"name\":\"Reports on Mathematical Physics\",\"volume\":\"94 3\",\"pages\":\"Pages 335-352\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034487724000831\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034487724000831","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文将贝塞尔函数和Tricomi函数与阿佩尔多项式结合,引入了阿佩尔-贝塞尔函数族和阿佩尔- Tricomi函数族。2变量2参数Hermite-Bessel和Hermite-Tricomi函数被认为是这些族的成员,并被框架在李代数T3的表示中。因此,导出了这些函数的隐式求和公式。还考虑了某些例子。本文最后用Weisner的方法推导了涉及2变量2参数Hermite-Tricomi函数的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lie algebra representation and hybrid families related to Hermite polynomials
In this article, the Bessel and Tricomi functions are combined with Appell polynomials to introduce the families of Appell–Bessel and Appell–Tricomi functions. The 2-variable 2-parameter Hermite–Bessel and Hermite–Tricomi functions are considered as members of these families, and framed within the representation of the Lie algebra T3. Consequently, the implicit summation formulae for these functions are derived. Certain examples are also considered. The article concludes with the derivation of a relation involving the 2-variable 2-parameter Hermite–Tricomi functions by following the Weisner's approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reports on Mathematical Physics
Reports on Mathematical Physics 物理-物理:数学物理
CiteScore
1.80
自引率
0.00%
发文量
40
审稿时长
6 months
期刊介绍: Reports on Mathematical Physics publish papers in theoretical physics which present a rigorous mathematical approach to problems of quantum and classical mechanics and field theories, relativity and gravitation, statistical physics, thermodynamics, mathematical foundations of physical theories, etc. Preferred are papers using modern methods of functional analysis, probability theory, differential geometry, algebra and mathematical logic. Papers without direct connection with physics will not be accepted. Manuscripts should be concise, but possibly complete in presentation and discussion, to be comprehensible not only for mathematicians, but also for mathematically oriented theoretical physicists. All papers should describe original work and be written in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信