改进的lengye - epstein系统的Hopf和Turing分岔分析

Q1 Mathematics
Panpan Zhang , Jun Li , Kuilin Wu
{"title":"改进的lengye - epstein系统的Hopf和Turing分岔分析","authors":"Panpan Zhang ,&nbsp;Jun Li ,&nbsp;Kuilin Wu","doi":"10.1016/j.csfx.2025.100127","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the dynamics for the modified Lengyel–Epstein system of the photosensitive CDIMA reaction. Specifically, considering the impact of illumination intensity, more limit cycles are discovered in the modified Lengyel–Epstein system compared to the original model. This enhancement not only enriches the dynamical phenomena but also indicates the system’s heightened sensitivity to the light intensity. By the center manifold theorem and normal form theory, we achieve the existence of Hopf bifurcation for both the corresponding ODE system and PDE system. Moreover, we provide some conditions for Turing instability, Turing bifurcation, spatially homogeneous and inhomogeneous Hopf bifurcation and Turing–Hopf bifurcation. Finally, we discuss the effect of illumination intensity for dynamical behavior of the modified Lengyel–Epstein system.</div></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"14 ","pages":"Article 100127"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hopf and Turing bifurcations analysis for the modified Lengyel–Epstein system\",\"authors\":\"Panpan Zhang ,&nbsp;Jun Li ,&nbsp;Kuilin Wu\",\"doi\":\"10.1016/j.csfx.2025.100127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we investigate the dynamics for the modified Lengyel–Epstein system of the photosensitive CDIMA reaction. Specifically, considering the impact of illumination intensity, more limit cycles are discovered in the modified Lengyel–Epstein system compared to the original model. This enhancement not only enriches the dynamical phenomena but also indicates the system’s heightened sensitivity to the light intensity. By the center manifold theorem and normal form theory, we achieve the existence of Hopf bifurcation for both the corresponding ODE system and PDE system. Moreover, we provide some conditions for Turing instability, Turing bifurcation, spatially homogeneous and inhomogeneous Hopf bifurcation and Turing–Hopf bifurcation. Finally, we discuss the effect of illumination intensity for dynamical behavior of the modified Lengyel–Epstein system.</div></div>\",\"PeriodicalId\":37147,\"journal\":{\"name\":\"Chaos, Solitons and Fractals: X\",\"volume\":\"14 \",\"pages\":\"Article 100127\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos, Solitons and Fractals: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590054425000028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054425000028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了光敏CDIMA反应的改进lengye - epstein体系的动力学。具体而言,考虑光照强度的影响,改进的lengyell - epstein系统比原模型发现了更多的极限环。这种增强不仅丰富了动力学现象,而且表明系统对光强的灵敏度提高。利用中心流形定理和范式理论,得到了相应的ODE系统和PDE系统的Hopf分岔的存在性。并且给出了图灵不稳定性、图灵分岔、空间齐次和非齐次Hopf分岔以及图灵- Hopf分岔的一些条件。最后讨论了光照强度对改进的lengye - epstein系统动力学行为的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hopf and Turing bifurcations analysis for the modified Lengyel–Epstein system
In this paper, we investigate the dynamics for the modified Lengyel–Epstein system of the photosensitive CDIMA reaction. Specifically, considering the impact of illumination intensity, more limit cycles are discovered in the modified Lengyel–Epstein system compared to the original model. This enhancement not only enriches the dynamical phenomena but also indicates the system’s heightened sensitivity to the light intensity. By the center manifold theorem and normal form theory, we achieve the existence of Hopf bifurcation for both the corresponding ODE system and PDE system. Moreover, we provide some conditions for Turing instability, Turing bifurcation, spatially homogeneous and inhomogeneous Hopf bifurcation and Turing–Hopf bifurcation. Finally, we discuss the effect of illumination intensity for dynamical behavior of the modified Lengyel–Epstein system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos, Solitons and Fractals: X
Chaos, Solitons and Fractals: X Mathematics-Mathematics (all)
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信