二维电子系统中量子维格纳固体形成的输运证据

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
A.A. Shashkin , M. Yu. Melnikov , S.V. Kravchenko
{"title":"二维电子系统中量子维格纳固体形成的输运证据","authors":"A.A. Shashkin ,&nbsp;M. Yu. Melnikov ,&nbsp;S.V. Kravchenko","doi":"10.1016/j.physe.2025.116192","DOIUrl":null,"url":null,"abstract":"<div><div>In this Review, we report compelling transport evidence for the formation of a quantum Wigner solid in two-dimensional (2D) electron systems in silicon metal–oxide–semiconductor field-effect transistors (MOSFETs) and ultra-clean SiGe/Si/SiGe heterostructures. We have observed two-threshold voltage–current characteristics accompanied by a peak of broadband current noise between the two threshold voltages in both 2D systems. The double threshold behavior is very similar to that observed for the collective depinning of the vortex lattice in Type-II superconductors provided the voltage and current axes are interchanged. The observed results can be described by a phenomenological theory of the collective depinning of elastic structures, which naturally generates a peak of a broadband current noise between the dynamic and static thresholds and changes to sliding of the solid over a pinning barrier above the static threshold.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"168 ","pages":"Article 116192"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transport evidence for the quantum Wigner solid formation in two-dimensional electron systems\",\"authors\":\"A.A. Shashkin ,&nbsp;M. Yu. Melnikov ,&nbsp;S.V. Kravchenko\",\"doi\":\"10.1016/j.physe.2025.116192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this Review, we report compelling transport evidence for the formation of a quantum Wigner solid in two-dimensional (2D) electron systems in silicon metal–oxide–semiconductor field-effect transistors (MOSFETs) and ultra-clean SiGe/Si/SiGe heterostructures. We have observed two-threshold voltage–current characteristics accompanied by a peak of broadband current noise between the two threshold voltages in both 2D systems. The double threshold behavior is very similar to that observed for the collective depinning of the vortex lattice in Type-II superconductors provided the voltage and current axes are interchanged. The observed results can be described by a phenomenological theory of the collective depinning of elastic structures, which naturally generates a peak of a broadband current noise between the dynamic and static thresholds and changes to sliding of the solid over a pinning barrier above the static threshold.</div></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":\"168 \",\"pages\":\"Article 116192\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947725000177\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725000177","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在这篇综述中,我们报告了在硅金属氧化物半导体场效应晶体管(mosfet)和超清洁SiGe/Si/SiGe异质结构的二维(2D)电子系统中形成量子维格纳固体的令人信服的输运证据。在两个二维系统中,我们观察到两个阈值电压-电流特性,并伴随着两个阈值电压之间的宽带电流噪声峰值。双阈值行为与在电压和电流轴互换的情况下ii型超导体涡旋晶格的集体脱壳现象非常相似。观察到的结果可以用弹性结构集体脱羽的现象学理论来描述,它自然地在动态和静态阈值之间产生一个宽带电流噪声峰值,并在静态阈值以上改变固体在钉住屏障上的滑动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transport evidence for the quantum Wigner solid formation in two-dimensional electron systems
In this Review, we report compelling transport evidence for the formation of a quantum Wigner solid in two-dimensional (2D) electron systems in silicon metal–oxide–semiconductor field-effect transistors (MOSFETs) and ultra-clean SiGe/Si/SiGe heterostructures. We have observed two-threshold voltage–current characteristics accompanied by a peak of broadband current noise between the two threshold voltages in both 2D systems. The double threshold behavior is very similar to that observed for the collective depinning of the vortex lattice in Type-II superconductors provided the voltage and current axes are interchanged. The observed results can be described by a phenomenological theory of the collective depinning of elastic structures, which naturally generates a peak of a broadband current noise between the dynamic and static thresholds and changes to sliding of the solid over a pinning barrier above the static threshold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信