IF 1.5 1区 数学 Q1 MATHEMATICS
Johannes Droschl
{"title":"Proof of a conjecture of Kudla and Rallis on quotients of degenerate principal series","authors":"Johannes Droschl","doi":"10.1016/j.aim.2025.110145","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we prove a conjecture of Kudla and Rallis, see <span><span>[12, Conjecture V.3.2]</span></span>. Let <em>χ</em> be a unitary character, <span><math><mi>s</mi><mo>∈</mo><mi>C</mi></math></span> and <em>W</em> a symplectic vector space over a non-archimedean field with symmetry group <span><math><mi>G</mi><mo>(</mo><mi>W</mi><mo>)</mo></math></span>. Denote by <span><math><mi>I</mi><mo>(</mo><mi>χ</mi><mo>,</mo><mi>s</mi><mo>)</mo></math></span> the degenerate principal series representation of <span><math><mi>G</mi><mo>(</mo><mi>W</mi><mo>⊕</mo><mi>W</mi><mo>)</mo></math></span>. Pulling back <span><math><mi>I</mi><mo>(</mo><mi>χ</mi><mo>,</mo><mi>s</mi><mo>)</mo></math></span> along the natural embedding <span><math><mi>G</mi><mo>(</mo><mi>W</mi><mo>)</mo><mo>×</mo><mi>G</mi><mo>(</mo><mi>W</mi><mo>)</mo><mo>↪</mo><mi>G</mi><mo>(</mo><mi>W</mi><mo>⊕</mo><mi>W</mi><mo>)</mo></math></span> gives a representation <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>W</mi><mo>,</mo><mi>W</mi></mrow></msub><mo>(</mo><mi>χ</mi><mo>,</mo><mi>s</mi><mo>)</mo></math></span> of <span><math><mi>G</mi><mo>(</mo><mi>W</mi><mo>)</mo><mo>×</mo><mi>G</mi><mo>(</mo><mi>W</mi><mo>)</mo></math></span>. Let <em>π</em> be an irreducible smooth complex representation of <span><math><mi>G</mi><mo>(</mo><mi>W</mi><mo>)</mo></math></span>. We then prove<span><span><span><math><msub><mrow><mi>dim</mi></mrow><mrow><mi>C</mi></mrow></msub><mo>⁡</mo><msub><mrow><mi>Hom</mi></mrow><mrow><mi>G</mi><mo>(</mo><mi>W</mi><mo>)</mo><mo>×</mo><mi>G</mi><mo>(</mo><mi>W</mi><mo>)</mo></mrow></msub><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>W</mi><mo>,</mo><mi>W</mi></mrow></msub><mo>(</mo><mi>χ</mi><mo>,</mo><mi>s</mi><mo>)</mo><mo>,</mo><mi>π</mi><mo>⊗</mo><msup><mrow><mi>π</mi></mrow><mrow><mo>∨</mo></mrow></msup><mo>)</mo><mo>=</mo><mn>1</mn><mo>.</mo></math></span></span></span> We also give analogous statements for <em>W</em> orthogonal or unitary. This gives in particular a new proof of the conservation relation of the local theta correspondence for symplectic-orthogonal and unitary dual pairs.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"464 ","pages":"Article 110145"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000187082500043X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了Kudla和Rallis的一个猜想,参见[12,猜想V.3.2]。设χ是一个酉字符,s∈C, W是一个对称群G(W)的非阿基米德域上的辛向量空间。用I(χ,s)表示G(W⊕W)的退化主级数表示。将I(χ,s)沿自然嵌入G(W)×G(W)“↑G(W⊕W”)拉回得到G(W)×G(W)的表达式IW,W(χ,s)。设π是G(W)的不可约光滑复表示。然后我们provedimC⁡HomG (W)×G (W) (IW, W(χ,s),π⊗π∨)= 1。我们也给出了W正交或幺正的类似表述。特别是给出了辛正交酉对偶的局部对应的守恒关系的一个新的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proof of a conjecture of Kudla and Rallis on quotients of degenerate principal series
In this paper we prove a conjecture of Kudla and Rallis, see [12, Conjecture V.3.2]. Let χ be a unitary character, sC and W a symplectic vector space over a non-archimedean field with symmetry group G(W). Denote by I(χ,s) the degenerate principal series representation of G(WW). Pulling back I(χ,s) along the natural embedding G(W)×G(W)G(WW) gives a representation IW,W(χ,s) of G(W)×G(W). Let π be an irreducible smooth complex representation of G(W). We then provedimCHomG(W)×G(W)(IW,W(χ,s),ππ)=1. We also give analogous statements for W orthogonal or unitary. This gives in particular a new proof of the conservation relation of the local theta correspondence for symplectic-orthogonal and unitary dual pairs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信